21.08.2023

В дисперсной системе паста дисперсионной средой является. Дисперсные системы. Гомогенная дисперсная система является раствором


Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.

То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 8 видов таких систем (табл. 11).

Таблица 11
Примеры дисперсных систем


По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами дисперсной фазы и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе (см. табл. 11).

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Классификация дисперсных систем и растворов представлена на схеме 2.

Схема 2
Классификация дисперсных систем и растворов

Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на три группы:

  1. эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;
  2. суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон, которым питаются гиганты киты, и т. д.;
  3. аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.

Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлива, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу.

Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.

Их подразделяют на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы , или золи . Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал, белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (III) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света. Это явление называют эффектом Тиндаля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Вторая подгруппа коллоидных систем - это гели , или студни у представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт-суфле «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом.

>> Химия: Дисперсные системы и растворы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.

Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.

То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой. Она может состоять из нескольких веществ.

Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой. Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).

И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.

В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем (табл. 9).

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе (табл. 9).

Классификация дисперсных систем и растворов представлена на схеме 1.

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта ; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на:

1) эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;

2) суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон , которым питаются гиганты-киты, и т. д.;

3) аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.

Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлив, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.

Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.

Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.

Их подразделяют на золи (коллоидные растворы) и гели (студни).

1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал , белки, некоторые полимеры.

Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида желе-за(Ш) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света. Это явление называют эффектом Тин-даля. Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации за--рядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Вторая подгруппа коллоидных систем - это гели , или студни, представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом.

Растворы

Раствором называют гомогенную систему, состоящую из двух и более веществ.

Растворы всегда однофазны, то есть представляют собой однородный газ, жидкость или твердое вещество. Это связано с тем, что одно из веществ распределено в массе другого в виде молекул, атомов или ионов (размер частиц менее 1 нм).

Растворы называют истинными , если требуется подчеркнуть их отличие от коллоидных растворов.

Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора. Например, вода в водных растворах поваренной соли, сахара, углекислого газа. Если же раствор образовался при смешении газа с газом, жидкости с жидкостью и твердого вещества с твердым, растворителем считают тот компонент, которого больше в растворе. Так,воздух - это раствор кислорода, благородных газов, углекислого газа в азоте (растворитель). Столовый уксус, в котором содержится от 5 до 9% уксусной кислоты, представляет собой раствор этой кислоты в воде (растворитель - вода). Но в уксусной эссенции роль растворителя играет уксусная кислота, так как ее массовая доля составляет 70- 80%, следовательно, это раствор воды в уксусной кислоте.

При кристаллизации жидкого сплава серебра и золота можно получить твердые растворы разного состава.

Растворы подразделяют на:

Молекулярные - это водные растворы неэлектролитов - органических веществ (спирта, глюкозы, сахарозы и т. д.);

Молекулярно-ионные - это растворы слабых электролитов (азотистой, сероводородной кислот и др.);

Ионные - это растворы сильных электролитов (щелочей, солей, кислот - NaOH, K2S04, HN03, НС104).

Раньше существовали две точки зрения на природу растворения и растворов: физическая и химическая. Согласно первой растворы рассматривали как механические смеси, согласно второй - как нестойкие химические соединения частиц растворенного вещества с водой или другим растворителем. Последняя теория была высказана в 1887 г. Д. И. Менделеевым , который посвятил исследованию растворов более 40 лет. Современная химия рассматривает растворение как физико-химический процесс, а растворы как физико-химические системы.

Более точное определение раствора таково:

Раствор - гомогенная (однородная) система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия.
Поведение и свойства растворов электролитов, как вы хорошо знаете, объясняет другая важнейшая теория химии - теория электролитической диссоциации, разработанная С. Аррениусом, развитая и дополненная учениками Д. И. Менделеева, и в первую очередь И. А. Каблуковым.

1. Что такое дисперсные системы?

2. При повреждении кожи (ранке) наблюдается свертывание крови - коагуляция золя. В чем сущность этого процесса? Почему это явление выполняет защитную функцию для организма? Как называют болезнь, при которой свертывание крови затруднено или не наблюдается?

3. Расскажите о значении различных дисперсных систем в быту.

4. Проследите эволюцию коллоидных систем в процессе развития жизни на Земле.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Дисперсные системы. ВМС

Основные понятия

Дисперсные системы – это гетерогенные системы, состоящие из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Особые свойства дисперсных систем обусловлены именно малым размером частиц и наличием большой межфазной поверхности . В связи с этим определяющими являются свойства поверхности, а не частиц в целом. Характерными являются процессы, происходящие на поверхности , а не внутри фазы. Отсюда становится понятным, почему коллоидную химию называют физико-химией поверхностных явлений и дисперсных систем .

Особенность дисперсных систем состоит в их дисперсности – одна из фаз обязательно должна быть раздробленной, ее называют дисперсной фазой . Сплошная среда, в которой распределены частицы дисперсной фазы, называется дисперсионной средой . Фаза считается дисперсной, если вещество раздроблено хотя бы в одном направлении. Если вещество раздроблено только по высоте, образуются пленки, ткани, пластины и т. д. Если вещество раздроблено и по высоте и по ширине, образуются волокна, нити, капилляры. Наконец, если вещество раздроблено по всем трем направлениям, дисперсная фаза состоит из дискретных (отдельных) частиц, форма которых может быть самой разнообразной.

Дисперсные системы можно классифицировать по многим признакам, что связано с огромным множеством объектов, которые изучает коллоидная химия. В качестве основного классификационного признака можно выделить размер частиц дисперсной фазы:

-Грубодисперсные (> 10 мкм): сахар-песок, грунты, туман, капли дождя, вулканический пепел, магма и т. п.

-Среднедисперсные (0,1-10 мкм): эритроциты крови человека, кишечная палочка и т. п.

-Высокодисперсные (1-100 нм): вирус гриппа, дым, муть в природных водах, искусственно полученные золи различных веществ, водные растворы природных полимеров (альбумин, желатин и др.) и т. п.

-Наноразмерные (1-10 нм): молекула гликогена, тонкие поры угля, золи металлов, полученные в присутствии молекул органических веществ, ограничивающих рост частиц, углеродные нанотрубки , магнитные нанонити из железа, никеля и т. п.

Здесь отметим, что классификацию дисперсных систем по размеру частиц мы рассматриваем первой не случайно. Именно размер частиц (линейный размер , а не вес и не число частиц атомов в частице!) является важнейшим количественным показателем дисперсных систем, определяющим их качественные особенности . По мере изменения размеров частиц изменяются все основные свойства дисперсных систем: реакционная, адсорбционная способность; оптические, каталитические свойства и т. д. Современная коллоидная химия изучает дисперсные системы с широким диапазоном размеров частиц: от грубодисперсных (10 -6 -10 - 4 м ) до высокодисперсных или собственно коллоидных (10 -9 -10 - 7 м ).

Под взаимодействием фаз дисперсных систем подразумевают процессы сольватации (гидратации в случае водных систем), т. е. образование сольватных (гидратных ) оболочек из молекул дисперсионной среды вокруг частиц дисперсной фазы. Соответственно, по интенсивности взаимодействия между веществами дисперсной фазы и дисперсионной среды (только для систем с жидкой дисперсионной средой), по предложению Г. Фрейндлиха различают следующие дисперсные системы:

-Лиофильные (гидрофильные, если ДС – вода): мицеллярные растворы ПАВ, критические эмульсии, водные растворы некоторых природных ВМС, например, белков (желатина, яичного белка), полисахаридов (крахмала). Для них характерно сильное взаимодействие частиц ДФ с молекулами ДС. В предельном случае наблюдается полное растворение. Лиофильные дисперсные системы образуются самопроизвольно вследствие процесса сольватации. Термодинамически агрегативно устойчивы.

-Лиофобные (гидрофобные, если ДС – вода): эмульсии, суспензии, золи. Для них характерно слабое взаимодействие частиц ДФ с молекулами ДС. Самопроизвольно не образуются, для их образования необходимо затратить работу. Термодинамически агрегативно неустойчивы (т. е. имеют тенденцию к самопроизвольной агрегации частиц дисперсной фазы), их относительная устойчивость (так называемая метастабильность ) обусловлена кинетическими факторами (т. е. низкой скоростью агрегации).

По агрегатному состоянию фаз В. Оствальд предложил ставшую весьма распространенной классификацию:

Таблица 1. Классификация дисперсных систем по агрегатному состоянию фаз

ДС

ДФ

Жидкая

Газообразная

Твердая

Твердая

Т/Ж – суспензии, золи: суспензии металлов и других твердых частиц, золи металлов и их оксидов

Т/Г – пыли, дымы, порошки: промышленные выбросы твердых частиц в атмосферу, дым от костра, песчаные бури, мучная и дорожная пыль в воздухе, аэрозоли твердых лекарственных веществ

Т/Т – сплавы, твердые коллоидные растворы: сплавы металлов, оксидные и металлоксидные композиционные материалы, минералы

Жидкая

Ж /Ж – эмульсии, кремы: молоко, сметана, нефть, косметические кремы

Ж/Г – аэрозоли с жидкой ДФ: туман, капли дождя, распыленная струя охлаждающей жидкости, распыленные в воздухе духи, жидкое топливо в камере сгорания) туманы

Ж/Т – пористые тела, заполненные жидкостью, капиллярные тела, гели: клетки живых организмов, жемчуг, глины, яблоко

Газооб-разная

Г/Ж – пены: мыльная пена, пивная пена, пена для тушения пожаров

Г/Т – пористые и капиллярные системы, ксерогели : пемза, активированный уголь, силикагель, пенопласт, древесина, бумага, картон, текстильные ткани

В соответствии с кинетическими свойствами дисперсной фазы различают свободнодисперсные и связнодисперсные системы. Выделяют также разбавленные и концентрированные системы. В связнодисперсных системах одна из фаз структурно закреплена (между частицами реализуется взаимодействие, они «связаны» друг с другом) и не может перемещаться свободно. В свободнодисперсных системах частицы обособлены и участвуют в тепловом движении и диффузии. В разбавленных связнодисперсных системах частицы образуют сплошную пространственную сетку (дисперсную структуру) – возникают гели . Дисперсные системы любого типа, полученные в концентрированном состоянии (пасты, мази, густые золи, густые аэрозоли и т. п.), также относят к связнодисперсным системам. В концентрированных дисперсных системах независимое движение частиц дисперсной фазы затруднено, и для них характерна некоторая степень структурированности, что и позволяет их рассматривать как связнодисперсные системы.

Получение и очищение дисперсных систем

Огромное разнообразие типов и форм дисперсных систем, которое встречается во всех областях жизнедеятельности человека, предполагает и многочисленность методов их получения – как общих, так и специальных. Логично рассмотреть по отдельности методы, в основе которых лежит один из подходов – конденсационный или диспергационный .

Действительно, механическое диспергирование является основным способом измельчения материалов, который применяется в промышленности и повсеместно встречается в природе. При механическом диспергировании преодоление межмолекулярных сил и накопление поверхностной энергии в процессе дробления происходят при совершении над системой внешней механической работы. Механическое диспергирование осуществляют различными способами: истиранием, раздавливанием, раскалыванием, распылением, барботажем (пропусканием струи воздуха через жидкость), встряхиванием, взрывом, действием звуковых и ультразвуковых волн и т. п. В промышленности так получают стройматериалы (цемент, бетонную крошку, сухие краски, шпатлевки и другие строительные смеси в виде сухих порошков и суспензий), лекарственные средства (порошки, мази, пасты, эмульсии), пищевые продукты (пряности, молотый кофе) и др. Механическим диспергированием обычно удается получить дисперсные системы только с довольно большим размером частиц (не менее 100 нм). Измельчением получают дисперсные системы Т , Т/Ж и Ж/Ж .

Пептизацией называют переход осадков в коллоидный раствор под действием специальных стабилизирующих добавок (пептизаторов ), либо за счет удаления из системы ионов, способствующих агрегации частиц. В роли пептизаторов могут выступать раствор электролита, поверхностно-активного вещества или растворитель. Пептизировать можно только свежеприготовленные осадки, в которых частицы коллоидного размера соединены в более крупные агрегаты через прослойки ДС. По мере хранения осадков происходят явления рекристаллизации и старения, приводящие к сращиванию частиц друг с другом, что препятствует пептизации. Пептизацию относят к методам диспергирования условно, т. к. в ее основе лежит и метод конденсации, т. е. предварительное получение агрегатов из истинных растворов. Метод пептизации, в отличие от других диспергационных методов, позволяет также добиться получения коллоидных систем с малым размером частиц (до 1 нм), что характерно в основном для методов конденсации.

К конденсационным способам получения дисперсных систем относятся конденсация , кристаллизация и десублимация . Они основаны на образовании новой фазы в условиях пересыщенного состояния веществ в газовой или жидкой среде. Необходимым условием конденсации является пересыщение и неравномерное распределение веществ в дисперсионной среде (флуктуации концентрации), а также образование центров конденсации или зародышей. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация для жидкой среды.

Методы конденсации не требуют специальных машин и дают возможность получать дисперсные системы с меньшим размером частиц по сравнению с диспергационными методами. В частности, диспергационные методы (за исключением метода пептизации и метода Бредига ) не позволяют получать наноразмерные дисперсные системы (1-100 нм). Для этой цели обычно используют конденсационные методы. При этом в зависимости от условий синтеза формируются частицы дисперсной фазы любых размеров. Еще одно преимущество конденсационного подхода заключается в том, что он в большинстве случаев не требуют существенной затраты внешней работы.

Для удаления низкомолекулярных примесей (в частности, дестабилизирующих электролитов) золи после получения часто подвергают очистке. Методами очистки золей являются диализ и ультрафильтрация .

Диализ основан на разнице в скорости диффузии небольших молекул или ионов и частиц коллоидных размеров через полупроницаемую перегородку – мембрану . Для этих целей применяют мембраны, изготовленные из животных и растительных перепонок, задубленного желатина, мембраны из коллодия, ацетата целлюлозы и целлофана, пергаментной бумаги, керамических пористых материалов и др.

Небольшие молекулы и ионы из золя проникают через мембрану и диффундируют в воду, контактирующую с мембраной, а молекулы воды при этом проникают через мембрану в обратном направлении. В результате после очистки коллоидная система оказывается разбавленной. Очистка коллоидных растворов таким способом требует значительного времени (дни, недели и даже месяцы). Для ускорения диализа можно применять разные приемы, например, увеличивать площадь мембраны, уменьшать слой очищаемой жидкости или часто менять внешнюю жидкость (воду), повышать температуру, прикладывать электрическое поле (электродиализ). В частности, электродиализ позволяет закончить процесс диализа в течение нескольких часов. В производственных условиях диализом очищают от солей белки (желатин, агар-агар, гуммиарабик), красители, силикагель, дубильные вещества и др

В процессе ультрафильтрации мембраной задерживаются частицы дисперсной фазы или макромолекулы, а дисперсионная среда с нежелательными низкомолекулярными примесями проходит через мембрану. Ультрафильтрация относится к баромембранным процессам, в отличие от диализа ее проводят под давлением. При ультрафильтрации достигают высокой степени очистки золей при одновременном их концентрировании. Иногда говорят, что ультрафильтрация – это диализ, проводимый под давлением, хотя это и не совсем верно (особо любознательные из Вас могут подумать почему).

Свойства дисперсных систем

Для того, чтобы более четко представлять процессы, которые лежат в основе, например, вышеописанных мембранных процессов – диализа и ультрафильтрации, целесообразно рассмотреть молекулярно-кинетические свойства растворов, которые обусловлены хаотическим тепловым движением молекул и атомов. Законы этого самопроизвольного движения изучает молекулярно-кинетическая теория. Некоторые свойства растворов обусловлены этим движением, т. е. определяются не составом, а числом кинетических единиц – молекул в единице объема или массы. К ним относятся свойства, которые называются коллигативными : диффузия, осмотическое давление, различия в давлении пара и температур замерзания и кипения в случае чистого растворителя и раствора.

Броуновское движение – это непрерывное беспорядочное движение частиц микроскопических и коллоидных размеров, не затухающие во времени. Это движение тем интенсивнее, чем выше температура и чем меньше масса частицы и вязкость дисперсионной среды.

Для количественной характеристики броуновского движения используется средний сдвиг , который связан с коэффициентом диффузии уравнением Эйнштейна-Смолуховского :

где D – коэффициент диффузии, t – время диффузии

Диффузией называется самопроизвольный процесс выравнивания концентрации молекул, ионов или коллоидных частиц под влиянием их теплового движения. Процесс диффузии идет самопроизвольно, поскольку он сопровождается увеличением энтропии системы. Напомним, что равномерное распределение вещества в системе отвечает ее наиболее вероятному состоянию.

Для количественного описания диффузии используется закон Фика , который был установлен по аналогии с законами переноса тепла и электричества:

,

где dQ – количество продиффундировавшего вещества; D – коэффициент диффузии; dc /dx – градиент концентрации; s – площадь, через которую идет диффузия; τ – продолжительность диффузии.

Осмос – это односторонняя диффузия молекул растворителя через полупроницаемую мембрану при условии разности концентраций раствора по обе стороны мембраны. При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации вещества к большей, что приводит к выравниванию концентраций. Возникновение потока обусловлено тем, что число ударов молекул растворителя о мембрану со стороны более разбавленного раствора (или чистого растворителя) будет больше, чем со стороны более концентрированного раствора. Это избыточное число ударов и является причиной перемещения растворителя через поры мембраны туда, где молекул меньше.

Для коллоидных систем можно записать

.

Седиментация – это еще одно из явлений, связанных с молекулярно-кинетическими свойствами дисперсных систем .

Седиментацией называют процесс оседания (в редких случаях всплывание) частиц дисперсной фазы в жидкой или газообразной среде под действием силы тяжести. Седиментация характерна для суспензий. В эмульсиях, наоборот, частицы дисперсной фазы обычно всплывают

Устойчивость дисперсных систем

Современная модель строения мицеллы учитывает тот факт, что противоионы располагаются в два слоя – плотный и диффузный, и что поверхностью скольжения частицы в растворе является граница между этими слоями

Наиболее важным электрокинетическим явлением, которое типично для дисперсных систем, является электрофорез, т. е. перемещение коллоидных частиц во внешнем электрическом поле.

Электрофорез и электроосмос – это электрокинетические явления I -го рода. К электрокинетическим явлениям II -го рода относятся потенциал протекания и потенциал седиментации , которые заключаются в возникновении разности потенциалов при перемещении частиц дисперсной фазы или дисперсионной среды.

Величина ζ - потенциала связана со скоростью электрофореза заряженных частиц уравнением Гельмгольца-Смолуховского :

где k – коэффициент, зависящий от формы частиц (для сфер k = 6, для цилиндров k = 4); v – линейная скорость перемещения частиц (или границы золя); ε – относительная диэлектрическая проницаемость; E – напряженность электрического поля.

В дисперсных системах удельная поверхность дисперсной фазы очень велика. Одно из наиболее важных следствий большой поверхности дисперсной фазы заключается в том, что лиофобные дисперсные системы обладают избыточной поверхностной энергией, а, следовательно, являются термодинамически неустойчивыми. Поэтому в дисперсных системах протекают различные самопроизвольные процессы, которые ведут к уменьшению избытка энергии. Наиболее общими являются процессы уменьшения удельной поверхности за счет укрупнения частиц. В итоге такие процессы приводят к разрушению системыТаким образом, ключевое свойство, которое характеризует само существование дисперсных систем – это их устойчивость, или, наоборот, неустойчивость.

Н.П. Песковым в 1920 г было предложено различать кинетическую и агрегативную устойчивости . В первом случае рассматривается выделение диспергированной фазы под действием силы тяжести в зависимости от степени дисперсности, а сама степень дисперсности полагается величиной, постоянной для данной системы. Во втором случае рассматриваются условия постоянства или непостоянства самой степени дисперсности частиц

Для большинства гидрофобных золей основным фактором, обеспечивающим их стабильность (наряду с гидратной оболочкой), является наличие одноименного заряда у частиц дисперсной фазы. Введение электролитов в гидрозоли может приводить к уменьшению или полной нейтрализации заряда коллоидных частиц, что ослабляет их электростатическое отталкивание, способствует сближению и агрегации

Минимальная концентрация электролита, которая вызывает начало процесса коагуляции называется порогом коагуляции g к (моль/дм 3).

Растворы высокомолекулярных веществ

Полимеры, подобно низкомолекулярным веществам, в зависимости от условий получения раствора (природа полимера и растворителя, температура и др.) могут образовывать как коллоидные, так и истинные растворы. В связи с этим принято говорить о коллоидном или истинном состоянии вещества в растворе. Мы не будем касаться систем «полимер – растворитель» коллоидного типа. Рассмотрим только растворы полимеров молекулярного типа. Следует отметить, что вследствие больших размеров молекул и особенностей их строения, растворы ВМС обладают рядом специфических свойств:

1. Равновесные процессы в растворах ВМС устанавливаются медленно.

2. Процессу растворения ВМС, как правило, предшествует процесс набухания.

3. Растворы полимеров не подчиняются законам идеальных растворов, т.е. законам Рауля и Вант-Гоффа .

4. При течении растворов полимеров возникает анизотропия свойств (неодинаковые физические свойства раствора в разных направлениях) за счет ориентации молекул в направлении течения.

5. Высокая вязкость растворов ВМС.

6. Молекулы полимеров, благодаря большим размерам, проявляют склонность к ассоциации в растворах. Время жизни ассоциатов полимеров более длительное, чем ассоциатов низкомолекулярных веществ.

Процесс растворения ВМС протекает самопроизвольно, но в течение длительного времени, и ему часто предшествует набухание полимера в растворителе. Полимеры, макромолекулы которых имеют симметричную форму, могут переходить в раствор, предварительно не набухая. Например, гемоглобин, печеночный крахмал – гликоген при растворении почти не набухают, а растворы этих веществ не обладают высокой вязкостью даже при сравнительно больших концентрациях. В то время, как вещества с сильно асимметрическими вытянутыми молекулами при растворении очень сильно набухают (желатин, целлюлоза, натуральный и синтетические каучуки).

Набухание – это увеличение массы и объема полимера за счет проникновения молекул растворителя в пространственную структуру ВМС.

Различают два вида набухания: неограниченное , заканчивающееся полным растворением ВМС (например, набухание желатины в воде, каучука в бензоле, нитроцеллюлозы в ацетоне) и ограниченное , приводящее к образованию набухшего полимера – студня (например, набухание целлюлозы в воде, желатина в холодной воде, вулканизованного каучука в бензоле).

ОПРЕДЕЛЕНИЕ

Дисперсные системы – образования, состоящие из двух или более фаз, которые практически не смешиваются и не реагируют друг с другом. Вещество, которое мелко распределено в другом веществе (дисперсионная среда) называют дисперсной фазой .

Существует классификация дисперсных систем по размеру частиц дисперсной фазы. Выделяют, молекулярно-ионные (< 1 нм) – глюкоза, сахароза, коллоидные (1-100 нм) – эмульсии (масло) и суспензии (раствор глины) и грубодисперсные (>100 нм) системы.

Различают гомогенные и гетерогенные дисперсные системы. Гомогенные системы по-другому называют истинными растворами.

Растворы

ОПРЕДЕЛЕНИЕ

Раствор – гомогенная система, состоящая из двух или более компонентов.

По агрегатному состоянию растворы делят на газообразные (воздух), жидкие, твердые (сплавы). В жидких растворах существует понятие растворителя и растворенного вещества. В большинстве случаев растворителем служит вода, однако это могут быть и неводные растворители (этанол, гексан, хлороформ).

Способы выражения концентрации растворов

Для выражения концентрации растворов используют: массовую долю растворенного вещества (, %) , которая показывает, сколько граммов растворенного вещества содержится в 100 г раствора.

Молярная концентрация (С М, моль/л) показывает, сколько моль растворенного вещества содержится в одном литре раствора. Растворыс концентрацией 0,1 моль/л называют децимолярными, 0,01 моль/л – сантимолярными, а с концентрацией 0,001 моль/л – миллимолярными.

Нормальная концентрация (С Н, моль-экв/л) показывает число эквивалентов растворенного вещества в одном литре раствора.

Моляльная концентрация (С m , моль/1кг H 2 O) – число моль растворенного вещества, приходящееся на 1 кг растворителя, т.е. на 1000 г воды.

Мольная доля растворенного вещества (N) – это отношение числа моль растворенного вещества к числу моль раствора. Для газовых растворов мольная доля вещества совпадает с объемной долей (φ ).

Растворимость

ОПРЕДЕЛЕНИЕ

Растворимость (s, г/100 г H 2 O) – свойство вещества растворяться в воде или другом растворителе.

По растворимости растворы и вещества делят на 3 группы: хорошо растворимые (сахар), малорастворимые (бензол, гипс) и практически нерастворимые (стекло, золото, серебро). Абсолютно нерастворимых веществ в воде нет, нет приборов, с помощью которых возможно вычислить количества вещества, которое растворилось. Растворимость зависит от температуры (рис. 1), природы вещества и давления (для газов). При повышении температуры, растворимость вещества увеличивается.


Рис. 1. Пример зависимости некоторых солей в воде от температуры

С понятием растворимости тесно связано понятие насыщенного раствора, поскольку растворимость характеризует массу растворенного вещества в насыщенном растворе. Пока вещество способно растворяться раствор называют ненасыщенным, если вещество перестает растворяться – насыщенным; на некоторое время можно создать пересыщенный раствор.

Давление пара растворов

Пар, находящийся в равновесии с жидкостью называется насыщенным. При заданной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. Поэтому каждой жидкости присуще давление насыщенного пара. Рассмотрим это явление на следующем примере: раствор неэлектролита (сахарозы) в воде – молекулы сахарозы значительно больше молекул воды. Давление насыщенного пара в растворе создает растворитель. Если сравнить между собой давление растворителя и давление растворителя над раствором при одинаковой температуре, то в растворе число молекул, перешедших в пар над раствором меньше, чем в самом растворе. Отсюда следует, что давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре.

Если обозначить давление насыщенного пара растворителя над чистым растворителем p 0 , а над раствором – p, то относительное понижение давления пара над раствором будет представлять собой (p 0 -p)/p 0 .

На основании этого Ф.М. Рауль вывел закон: относительное понижение насыщенного пара растворителя над раствором равно молярной доле растворенного вещества: (p 0 -p)/p 0 = N (молярная доля растворенного вещества).

Криоскопия. Эбулиоскопия. Второй закон Рауля

Понятия криоскопии и эбулиоскопии тесно связаны с температурами замерзания и кипения растворов, соответственно. Так, температура кипения и кристаллизация растворов зависят от давления пара над раствором. Любая жидкость кипит при той температуре, при которой давление ее насыщенного пара достигает внешнего (атмосферного давления).

При замерзании кристаллизация начинается при той температуре, при которой давление насыщенного пара над жидкой фазой равно давлению насыщенного пара над твердой фазой. Отсюда – второй закон Рауля: понижение температуры кристаллизации и повышение температуры кипения раствора пропорционально концентрациям растворенного вещества. Математическое выражение этого закона:

Δ T крист = K × C m ,

Δ T кип = Е × C m ,

где К и Е криоскопическая и эбулиоскопическая константы, зависящие от природы растворителя.

Примеры решения задач

ПРИМЕР 1

Задание Какое количество воды и 80%-го раствора уксусной кислоты следует взять для получения 200 г 8%-го раствора?
Решение

Пусть масса 80% раствора уксусной кислоты равна х г. Найдем массу растворенного в нем вещества:

m р.в-ва (CH 3 COOH) =m р-ра × /100%

m р.в-ва (CH 3 COOH) 1 =х × 0,8 (г)

Найдем массу растворенного вещества в растворе 8%-й уксусной кислоты:

m р.в-ва (CH 3 COOH) 2 =200 (г) × 0,08 = 16 (г)

m р.в-ва (CH 3 COOH) 2 = х × 0,8 (г) = 16 (г)

Найдем х:

х = 16/0,8 = 20

Масса 80% раствора уксусной кислоты равна 20 (г).

Найдем необходимое количество воды:

m(H 2 O) = m р-ра2 – m р-ра1

m(H 2 O) = 200 (г) – 20 (г) = 180 (г)

Ответ m р-ра (CH 3 COOH) 80% = 20 (г), m(H 2 O) = 180 (г)

ПРИМЕР 2

Задание Смешали 200 г воды и 50 г гидроксида натрия. Определите массовую долю гидроксида натрия в растворе.
Решение Записываем формулу для нахождения массовой доли:

Найдем массу раствора гидроксида натрия:

m р-ра (NaOH) = m(H 2 O) + m(NaOH)

m р-ра (NaOH) = 200 +50 = 250 (г)

Найдем массовую долю гидроксида натрия.

Коллоидная химия - наука, которая изучает методы получения, состав, внутреннюю структуру, химические и физические свойства дисперсных систем. Дисперсные системы - это системы, которые состоят из раздробленных частиц (дисперсная фаза), распределенных в окружающей (дисперсной) среде: газах, жидкостях или твердых телах. Размеры частиц дисперсионной фазы (кристалликов, капелек, пузырьков) отличаются степенью дисперсности, величина которой прямо пропорциональна размеру частиц. Кроме этого, дисперсные частицы различают и по другим признакам, как правило, по дисперсной фазы и среды.

Дисперсные системы и их классификация

Все дисперсионный системы по размеру частиц дисперсионной фазы можно классифицировать на молекулярно-ионные (меньше одного нм), коллоидные (от одного до ста нм), грубодисперсные (более ста нм).

Молекулярно-дисперсные системы. Указанные системы содержат частицы, размер которых не превышает одного нм. К данной группе относятся разнообразные истинные растворы неэлектролитов: глюкозы, мочевины, спирта, сахарозы.

Грубодисперсные системы характеризируются наиболее крупными частицами. К ним относят эмульсии и суспензии. Дисперсные системы, у которых твердое вещество локализируется в жидкой дисперсионной среде (раствор крахмала, глины), называются суспензиями. Эмульсии - это системы, которые получают в результате смешивания двух жидкостей, где одна в виде капелек диспергирована в другой (масло, толуол, бензол в воде или капельки триацилглицеролов (жира) в молоке.

Коллоидные дисперсные системы . В них размеры достигают до 100 нм. Такие частицы легко проникают через поры бумажных фильтров, однако не проникают через поры биологических мембран растений и животных. Поскольку коллоидные частицы (мицеллы) имеют электрозаряд и сольватные ионные оболочки, благодаря которым они остаются во взвешенном состоянии, они достаточно продолжительное время могут не выпадать в осадок. Ярким примером являются растворы желатина, альбумина, гуммиарабика, золота и серебра.

Позволяет различить гомогенные и гетерогенные дисперсные системы. В гомогенных дисперсных системах частицы фазы измельчены до молекул, атомов и ионов. Примером таких дисперсионных систем может быть раствор глюкозы в воде (молекулярно-дисперсная система) и кухонной соли в воде (ионно-дисперсная система). Они являются Размер молекул дисперсной фазы не превышает одного нанометра.

Дисперсные системы и растворы

Из всех представленных систем и растворов в жизни живых организмов наибольшее значение имеют коллоидные дисперсные системы. Как известно, химической основой существования живого организма является обмен белков в нем. В среднем концентрация белков в организме составляет от 18 до 21 %. Большинство белков растворяются в воде (концентрация которой в организме человека и животных составляет примерно 65 %) и образуют коллоидные растворы.

Различают две группы коллоидных растворов: жидкие (золи) и гелеобразные (гели). Все процессы жизнедеятельности, которые происходят в живых организмах, связаны с коллоидным состоянием материи. В каждой живой клетке биополимеры (нуклеиновые кислоты, белки, гикозаминогликаны, гликоген) находятся в виде дисперсных систем.

Коллоидные растворы широко распространены и в К таким растворам относят нефть, ткани, пластмассы, Множество пищевых продуктов можно отнести к коллоидным растворам: кефир, молоко и т.д. Большинство лекарственных препаратов (сыворотки, антигены, вакцины) являются коллоидными растворами. К коллоидным растворам относят и краски.


© 2024
youngforyoung.ru - Медицинский портал - Будьте здоровы