13.12.2023

Первичные и вторичные метаболиты бактерий. Вторичные метаболиты: характеристики и применение. Измерение роста бактерий и грибов в культуре


Под метаболизмом, или обменом веществ, понимают совокупность хи­мических реакций в организме, обеспечивающих его веществами для по­строения тела и энергией для поддержания жизнедеятельности. Часть реак­ций оказывается сходной для всех живых организмов (образование и рас­щепление нуклеиновых кислот, белков и пептидов, а также большинства углеводов, некоторых карбоновых кислот и т.д.) и получила название пер­вичного обмена (или первичного метаболизма).

Помимо реакций первичного обмена, существует значительное число метаболических путей, приводящих к образованию соединений, свойствен­ных лишь определенным, иногда очень немногим, группам организмов.

Эти реакции, согласно И.Чапеку (1921) и К.Пэху (1940), объединяются термином вторичный метаболизм , или обмен, а их продукты называются продуктами вторичного метаболизма , или вторичными соединениями (иногда вторич­ными метаболитами).

Вторичные соединения образуются преимущественно у вегетативно малоподвижных групп живых организмов - растений и грибов, а также у многих прокариот.

У животных продукты вторичного обмена образуются редко, но часто поступают извне вместе с растительной пищей.

Роль про­дуктов вторичного метаболизма и причины их появления в той или иной группе различны. В самой общей форме им приписываются адаптивное значение и в широком смысле защитные свойства.

Стремительное развитие химии природных соединений за последние три десятилетия, связанное с созданием высокоразрешающих аналитических инструментов, привело к тому, что мир "вторичных соединений" значитель­но расширился. Например, число известных на сегодня алкалоидов прибли­жается к 5000 (по некоторым данным, к 10 000), фенольных соединений - к 10 000, причем эти цифры растут не только с каждым годом, но и с каждым месяцем.

Любое растительное сырье всегда содержит сложный набор первичных и вторичных соединений, которые, как уже говорилось, определяют разно­сторонний характер действия лекарственных растений. Однако роль тех и других в современной фитотерапии пока различна.

Известно относительно немного объектов, использование которых в медицине определяется прежде всего наличием в них первичных соедине­ний. Однако в будущем не исключено повышение их роли в медицине и использование в качестве источников получения новых иммуномодулирующих средств.

Продукты вторичного обмена применяются в современной медицине значительно чаще и шире. Это обусловлено ощутимым и нередко очень «ярким» их фармакологическим эффектом.

Образуясь на основе первичных соединений, они могут либо накапливаться в чистом виде, либо подверга­ются гликозилированию в ходе реакций обмена, т.е. оказываются присоеди­ненными к молекуле какого-либо сахара.


В результате гликозилирования возникают молекулы - гетерозиды, которые отличаются от вторичных со­единений, как правило, лучшей растворимостью, что об­легчает их участие в реакциях обмена и имеет в этом смысле важнейшее биологическое значение.

Гликозилированные формы любых вторичных со­единений принято называть гликозидами.

Вещества первичного синтеза образуются в процессе ассимиляции, т.е. превращения веществ, поступающих в организм извне, в вещества самого организма (протопласт клеток, запасные вещества и т.д.).

К веществам первичного синтеза относят аминокислоты, белки, липиды, углеводы, ферменты, витамины и органические кислоты.

Липиды (жиры), углеводы (полисахариды) и витамины широко используются в медицинской практике (характеристика этих групп веществ дана в соответствующих темах).

Белки , наряду с липидами и углеводами, составляют структуру клеток и тканей растительного организма, участвуют в процессах биосинтеза, являются эффективным энергетическим материалом.

Белки и аминокислоты лекарственных растений оказывают неспецифическое благоприятное действие на организм больного. Они влияют на синтез белков, создают условия для усиленного синтеза иммунных тел, что приводит к повышению защитных сил организма. Улучшенный синтез белков включает также и усиленный синтез ферментов, вследствие чего улучшается обмен веществ. Биогенные амины и аминокислоты играют важную роль в нормализации нервных процессов.

Белки - биополимеры, структурную основу которых составляют длин­ные полипептидные цепи, построенные из остатков α-аминокислот, соеди­ненных между собой пептидными связями. Белки делят на простые (при гидролизе дают только аминокислоты) и сложные - в них белок связан с веществами небелковой природы: с нуклеиновыми кислотами (нуклеопротеиды), полисахаридами (гликопротеиды), липидами (липопротеиды), пиг­ментами (хромопротеиды), ионами металлов (металлопротеиды), остатками фосфорной кислоты (фосфопротеиды).

В настоящий момент почти нет объектов растительного происхождения, применение которых определялось бы наличием в них главным образом белков. Однако не исключено, что в будущем модифицированные расти­тельные белки могут быть использованы как средства, регулирующие обмен веществ в человеческом организме.

Липиды - жиры и жироподобные вещества, являющиеся производными высших жирных кислот, спиртов или альдегидов.

Подразделяются на простые и сложные.

К простым относятся липиды, молекулы которых содержат только остатки жирных кислот (или альдегидов) и спиртов. Из простых липидов в растениях и животных встречаются жиры и жирные масла, представляющие собой триацилглицерины (триглицериды) и воски.

Последние состоят из сложных эфиров высших жирных кислот одно- или двухатомных высших спиртов. К жирам близки простагландины, образующиеся в организме из полиненасыщенных жирных кислот. По химической природе это производные кислоты простаноевой со скелетом из 20 атомов углерода и содержащие циклопентановое кольцо.

Сложные липиды делят на две большие группы:

фосфолипиды и гликолипиды (т. е. соединения, имеющие в своей структуре остаток кислоты фосфорной или углеводный компонент). В составе живых клеток липиды играют важную роль в процессах жизнеобеспечения, образуя энергетиче­ские резервы у растений и животных.

Нуклеиновые кислоты - биополимеры, мономерными звеньями которых являются нуклеотиды, состоящие из остатка фосфорной кислоты, углевод­ного компонента (рибозы или дезоксирибозы) и азотистого (пуринового или пиримидинового) основания. Различают дезоксирибойуклеиновые (ДНК) и рибонуклеиновые (РНК) кислоты. Нуклеиновые кислоты из растений в лечебных целях пока не используются.

Ферменты занимают особое место среди белков. Роль ферментов в растениях специфична - они являются катализаторами большинства химических реакций.

Все ферменты делятся на 2 класса: однокомпонентные и двухкомпонентные. Однокомпонентные ферменты состоят только из белка,

двухкомпонентные - из белка (апофермента) и небелковой части (кофермента). Коферментами могут быть витамины.

В медицинской практике используют следующие ферментные препараты:

- "Нигедаза " - из семян чернушки дамасской - Nigella damascena, сем. лютиковых - Ranunculaceae. В основе препарата фермент липолитического действия, вызывает гидролитическое расщепление жиров растительного и животного происхождения.

Препарат эффективен при панкреатитах, энтероколитах и возрастном снижении липолитической активности пищеварительного сока.

- "Карипазим" и "Лекозим" - из высушенного млечного сока (латекса) папайи (дынного дерева) - Carica papaya L., сем. папаевых - Cariacaceae.

В основе "Карипазима " - сумма протеолитических ферментов (папаин, химопапаин, пептидаза).

Применяют при ожогах III степени, ускоряет отторжение струпов, очищает гранулирующие раны от гнойно-некротических масс.

В основе "Лекозима " - протеолитический фермент папаин и муколитический фермент лизоцим. Применяют в ортопедической, травматологической и нейрохирургической практике при межпозвоночном остеохондрозе, а также в офтальмологии для рассасывания эксудатов.

Органические кислоты, наряду с углеводами и белками, являются самыми распространенными веществами в растениях.

Они принимают участие в дыхании растений, биосинтезе белков, жиров и других веществ. Органические кислоты относятся к веществам как первичного синтеза (яблочная, уксусная, щавелевая, аскорбиновая), так и вторичного синтеза (урсоловая, олеаноловая).

Органические кислоты являются фармакологически активными веществами и участвуют в суммарном эффекте препаратов и лекарственных форм растений:

Салициловая и урсоловая кислоты обладают противовоспалительным действием;

Яблочная и янтарная кислоты - доноры энергетических групп, способствуют повышению физической и умственной работоспособности;

Аскорбиновая кислота - витамин С.

Витамины - особая группа орга­нических веществ, выполняющих важ­ные биологические и биохимические функции в живых организмах. Эти органические соединения различной химической природы синтезируются главным образом растениями, а также микроорганизмами.

Человеку и жи­вотным, которые их не синтезируют, витамины требуются в очень малых количествах по сравнению с пита­тельными веществами (белками, угле­водами, жирами).

Известно более 20 витаминов. Они имеют буквенные обозначения, названия химические и названия, характеризующие их физио­логическое действие. Классифициру­ются витамины на водорастворимые (кислота аскорбиновая, тиамин, ри­бофлавин, кислота пантотеновая, пиридоксин, кислота фолиевая, цианокобаламин, никотинамид, биотин)

и жирорастворимые (ретинол, филлохинон, кальциферолы, токоферолы). К витаминоподобным веществам при­надлежат некоторые флавоноиды, липоевая, оротовая, пангамовая кисло­ты, холин, инозит.

Биологическая роль витаминов разнообразна. Установле­на тесная связь между витаминами и ферментами. Например, большинство витаминов группы В являются предшественниками коферментов и простетических групп ферментов.

Углеводы - обширный класс органических веществ, к которому отно­сятся полиоксикарбонильные соединения и их производные. В зависимости от числа мономеров в молекуле они подразделяются на моносахариды, олигосахариды и полисахариды.

Углеводы, состоящие исключительно из полиоксикарбонильных соеди­нений, получили название гомозидов, а их производные, в молекуле которых имеются остатки иных соединений, называются гетерозидами. К гетерозидам относятся все виды гликозидов.

Моно- и олигосахариды - нормальные компоненты любой живой клет­ки. В тех случаях, когда они накапливаются в значительных количествах, их относят к так называемым эргастическим веществам.

Полисахариды, как правило, всегда накапливаются в значительных количествах как продукты жизнедеятельности протопласта.

Моносахариды и олигосахариды используются в чистом виде, обычно в виде глюкозы, фруктозы и сахарозы. Будучи энергетическими веществами, моно- и олигосахариды, как правило, применяются в качестве наполнителей при изготовлении различных лекарственных форм.

Растения являются ис­точниками получения этих углеводов (сахарный тростник, свекла, вино­град, гидролизованная древесина ряда хвойных и древесных покрытосе­менных).

В растениях синтезируются различные формы полисахаридов , ко­торые отличаются друг от друга как по структуре, так и по выполняемым функциям. Полисахариды находят довольно широкое применение в медицине в различных формах. В частности, широко используются крахмал и продукты его гидролиза, а также целлюлоза, пектин, альгинаты, камеди и слизи.

Целлюлоза (клетчатка ) - поли­мер, составляющий основную массу клеточных стенок растений. Полагают, что молекула клетчатки у разных растений содержит от 1400 до 10 000 остатков β-D-глюкозы.

Крахмал и инулин относятся к за­пасным полисахаридам.

Крахмал на 96-97,6 % состоит из двух полисахаридов: амилозы (линейный глюкан) и амилопектина (разветвленный глю­кан).

Он всегда запасается в виде крахмальных зерен в период активно­го фотосинтеза. У представителей сем. Аsteraсеае и Сатрапи/асеае накапливаются фруктозаны (инулин), особенно в больших количествах в подземных органах.

Слизи и камеди (гумми) - смеси гомо- и гетеросахаридов и полиуро-нидов. Камеди состоят из гетерополисахаридов с обязательным участи­ем уроновых кислот, карбонильные группы которых связаныс ионамиСа 2+ , К + и Мg 2+ .

По растворимости в воде камеди делятся на 3 группы :

Арабиновые, хорошо растворимые в воде (абрикосовая и аравийская);

Бассориновые, плохо растворимые в воде, но сильно в ней набухающие (трагакантовая)

И церазиновые, плохо растворимые и плохо набухающие в воде (вишневая).

Слизи , в отличие от камедей, мо­гут быть и нейтральными (не содержат уроновых кислот), а также имеют меньшую молекулярную массу и хоро­шо растворимы в воде.

Пектиновые вещества - высоко­молекулярные гетерополисахариды, главным структурным компонентом которых является кислота β-D-галактуроновая (полигалактуронид).

В рас­тениях пектиновые вещества присут­ствуют в виде нерастворимого прото­пектина - полимера метоксилированной полигалактуроновой кислоты с галактаном и арабаном клеточной стен­ки: цепочки полиуронида соединены между собой ионами Са 2+ и Мg 2+ .

Вещества вторичного метаболизма

Вещества вторичного синтеза образуются в растениях в результате

Диссимиляции.

Диссимиляция - процесс распада веществ первичного синтеза до более простых веществ, сопровождающийся выделением энергии. Из этих простых веществ с затратой выделившейся энергии образуются вещества вто­ричного синтеза. Например, глюкоза (вещество первичного синтеза) распадается до уксусной кислоты, из которой синтезируется мевалоновая кислота и через ряд промежуточных продуктов - все терпены.

К веществам вторичного синтеза относятся терпены, гликозиды, фенольные соединения, алкалоиды. Все они участвуют в обмене веществ и выполняют определенные важные для растений функции.

Вещества вторичного синтеза применяются в медицинской практике значительно чаще и шире, чем вещества первичного синтеза.

Каждая группа веществ растений не является изолированной и неразрыв­но связана с другими группами биохимическими процессами.

Например:

Большая часть фенольных соединений является гликозидами;

Горечи из класса терпенов являются гликозидами;

Растительные стероиды по происхождению являются терпенами, в то же время сердечные гликозиды, стероидные сапонины и стероидные алкалоиды являются гликозидами;

Каротиноиды, производные тетратерпенов, являются витаминами;

Моносахариды и олигосахариды входят в состав гликозидов.

Вещества первичного синтеза содержат все растения, вещества вторич-

ного синтеза накапливают растения отдельных видов, родов, семейств.

Вторичные метаболиты образуются по преиму­ществу у вегетативно малоподвижных групп живых организмов - растений и грибов.

Роль продуктов вторичного метабо­лизма и причины их появления в той или иной систематической группе различны. В самой общей форме им приписывается адаптивное значение и в широком смысле защитные свой­ства.

В современной медицине продук­ты вторичного обмена применяются значительно шире и чаще, чем пер­вичные метаболиты.

Это связано не­редко с очень ярким фармакологиче­ским эффектом и множественным воздействием на различные системы и органы человека и животных. Синте­зируются они на основе первичных соединений и могут накапливаться либо в свободном виде, либо в ходе реакций обмена подвергаются гликозилированию, т. е. связываются с ка­ким-либо сахаром.

Алкалоиды - азотсодержащие органические соединения основного характера, преимущественно расти­тельного происхождения. Строение молекул алкалоидов весьма разнооб­разно и нередко довольно сложно.

Азот, как правило, располагается в гетероциклах, но иногда находится в бо­ковой цепи. Чаще всего алкалоиды классифицируют на основе строения этих гетероциклов, либо в соответ­ствии с их биогенетическими предше­ственниками - аминокислотами.

Вы­деляют следующие основные группы алкалоидов: пирролидиновые, пири­диновые, пиперидиновые,пирролизидиновые, хинолизидиновые, хиназо-линовые,хинолиновые, изохинолиновые, индольные, дигидроиндольные (беталаины), имидазоловые, пуриновые, дитерпеновые, стероидные (гликоалкалоиды) и алкалоиды без гете­роциклов (протоалкалоиды). Многие из алкалоидов обладают специфиче­ским, часто уникальным физиологи­ческим действием и широко исполь­зуются в медицине. Некоторые алка­лоиды - сильные яды (например, алкалоиды кураре).

Антраценпроизводные -группаприродных соединений желтой, оран­жевой или красной окраски, в основе которых лежит структура антрацена. Они могут иметь различную степень окисленности среднего кольца (про­изводные антрона, антранола и антрахинона) и структуру углеродного скелета (мономерные, димерные и конденсированные соединения). Большинство из них являются произ­водными хризацина (1,8-дигидроксиантрахинона). Реже встречаются про­изводные ализарина (1,2-дигидроксиантрахинона). В растениях произ­водные антрацена могут находиться в свободном виде (агликоны) или в виде гликозидов (антрагликозиды).

Витанолиды - группа фитостероидов, В настоящее время известно не­сколько рядов этого класса соедине­ний. Витанолиды - это полиоксистероиды, у которых в положении 17 находится 6-членное лактонное коль­цо, а в кольце А - кетогруппа у С 1 .

Гликозиды - широко распространенные природные соединения, рас­падающиеся под влиянием различных агентов (кислота, щелочь или фер­мент) на углеводную часть и агликон (генин). Гликозидная связь между са­харом и агликоном может быть образована с участием атомов О, N или S (О-, N- или S-гликозиды), а также за счет С-С атомов (С-гликозиды).

Наи­большее распространение в расти­тельном мире имеют O-гликозиды). Между собой гликозиды могут отличаться как структурой агликона, так и строением сахарной цепи. Углевод­ные компоненты представлены моносахаридами, дисахаридами и олигосахаридами, и, соответственно, гли­козиды называются монозидами, биозидами и олигозидами.

Своеобразными группами природных соединений являются цианогенные гликозиды и тиогликозиды (глюкозинолаты).

Циа­ногенные гликозиды могут быть пред­ставлены как производные α-гидроксинитрилов, содержащих в своем со­ставе синильную кислоту.

Широкое распространение они имеют среди растений сем. Rosасеае, подсем. Рrипоidеае, концентрируясь преимуще­ственно в их семенах (например, гли­козиды амигдалин и пруназин в семе­нах Атуgdalus соттиnis , Аrтеniаса vи1garis ).

Тиогликозиды (глюкозинолаты ) в настоящее время рассматриваются в качестве производных гипотетиче­ского аниона - глюкозинолата, отсю­да и второе название.

Глюкозинолаты найдены пока только у двудольных растений и характерны для сем. Вrassi сасеае, Сарраridaсеае, Resedасеае и других представителей порядка Сарраrа1еs.

В растениях они содер­жатся в виде солей со щелочными металлами, чаще всего с калием (на­пример, глюкозинолат синигрин из семян Вrassica jипсеа и В.nigra .

Изопреноиды - обширный класс природных соединений, рассматрива-

емых как продукт биогенного превращения изопрена.

К ним относятся различные терпены, их производные - терпеноиды и стероиды. Некоторые изопреноиды - структурные фрагменты антибиотиков, некоторые - витаминов, алкалоидов и гормонов животных.

Терпены и терпеноиды - ненасы­щенные углеводороды и их производ­ные состава (С 5 Н 8) n , где n = 2 или n > 2. По числу изопреновых звеньев их делят на несколько классов: моно-, сескви-, ди-, три-,тетра- и политер-пеноиды.

Монотерпеноиды (С 10 Н 16) и сесквитерпеноиды (С 15 Н 24) являются обыч­ными компонентами эфирных масел.

Вторичные метаболиты растений

Термины "вторичные метаболиты" и "вторичный метаболизм" вошли в лексику биологов в конце XIX века с легкой руки профессора Косселя. В 1891 году в Берлине он прочитал не собрании Физиологического общества лекцию, которая называлась «О химическом составе клеток.». В этой лекции, которая была опубликована в том же году в Archiv fur Physiologie, он предложил разделить составляющие клетку вещества на первичные и вторичные. «В то время как первичные метаболиты присутствуют в каждой растительной клетке, способной к делению, то вторичные метаболиты присутствуют в клетках только «нечаянно» и не необходимы для жизни растения.

Случайное распространение этих соединений, их нерегулярное нахождение в близких видах растений, вероятно свидетельствует о том, что их синтез связан с процессами, не являющимися неотъемлемыми для каждой клетки, а имеющими скорее вторичный характер.... Я предлагаю называть соединения, имеющие важность для каждой клетки первичными, а соединения, не присутствующие в любой растительной клетке - вторичными». Отсюда становится понятным происхождение названия «вторичные метаболиты» - значит второстепенные, «случайные».

Круг соединений первичного метаболизма очевиден - это прежде всего белки, жиры, углеводы и

нуклеиновые кислоты. Правда, Коссель считал первичными метаболитами только несколько сотен низкомолекулярных соединений, необходимых для каждой делящейся растительной клетки. До недавнего времени вторичные матаболиты также не служили предметом особых споров. Соглашаясь с Косселем, большинство исследователей считали, что это некоторые "чудачества" метаболизма, допустимые излишества. Такие соединения в литературе иногда даже называли "веществами роскоши клеток".

Подавляющее большинство активных агентов было получено из растений. Первым таким соединением оказался морфий - алкалоид морфин, который в 1803 году выделил из опия (высушенный сок коробочек мака) немецкий аптекарь Зертюнер. Собственно, это событие можно считать началом изучения вторичных метаболитов высших растений.

Затем наступил черед других алкалоидов. Профессор Харьковского университета Ф.И.Гизе в 1816 году получил из коры хинного дерева цинхонин, но это осталось практически незамеченным и многие исследователи приписывают открытие алкалоидов хинного дерева Десосу, который выделил в чистом виде хинин и цинхонин только в 1820 г.

В 1818 году Каванту и Пелетье выделили из рвотного ореха (семена чилибухи Strychnos nux-vomica L.) стрихнин; Рунге в 1920 году нашел кофеин в кофе; в 1826 г. Гизекке открыл кониин в болиголове (Conium maculatum L); в 1828 г. Поссель и Райман выделили никотин из табака; в 1831 г. Майн получил атропин из белладонны (Atropa beladonna L.).

Использования природного многообразия в терапевтических целях не ограничивается только грибами и актиномицетами, продуцирующими антибиотики. В частности, растения отличаются поразительным многообразием синтетических процессов, конечные продукты которых представлены соединениями самого разного химического строения. В современной медицине применяют жирные кислоты, масла, полисахариды растительного происхождения, а также удивительно разнообразные вторичные метаболиты. Вторичный метаболизм, в отличие от общего для всех организмов первичного обмена, характеризуется таксономическим своеобразием. Вторичный метаболизм растений - это особенность дифференцированных растительных клеток и тканей, он присущ только специализированным органам, приурочен к определённым фазам жизненного цикла. К основным классам вторичных метаболитов относятся алкалоиды, изопреноиды и фенольные соединения. В растениях также синтезируются цианогенные гликозиды, поликетиды, витамины. Из 30 известных витаминов около 20 поступает в организм человека с растительной пищей. Некоторые из перечисленных классов соединений, а также растения, из которых они выделяются, представлены в таблице

Вторичные метаболиты Растение-источник

Алкалоиды Мак снотворный. Красавка белладонна. Барвинок. Раувольфия. Безвременник. Хинное дерево. Табак.

Изопреноиды:

таксолы Тиссовое дерево

сердечные гликозиды, или карденолиды Наперстянка. Лиана строфант. Ландыш майский.

тритерпеновые гликозиды,или сапонины Женьшень. Солодка. Аралия.

стероидные гликозиды Лианы диоскорея.

Фенольные соединения:

флавоноиды Солодка. Пустырник. Бессмертник.

Алкалоиды. К настоящему времени известно около10 тысяч алкалоидов, и они обладают высокой фармакологической активностью. Содержание алкалоидов в растительном сырье обычно не превышает нескольких процентов, но в коре хинном дерева их количество достигает 15-20%. Алкалоиды могут концентрироваться в различных органах и тканях. При этом часто они накапливаются не в тех тканях, где синтезируются. Например, никотин синтезируется в корнях табака, а запасается в листьях. Среди наиболее известных алкалоидов можно назвать морфин, кодеин, папаверин, которые были выделены из коробочек мака снотворного (Papaver somniferum). Алкалоиды красавки белладонны (Atropa belladonna), которую иначе называют «сонной одурью», входят в состав многих медицинских препаратов, таких как, бесалол, беллалгин, беллатаминал, солутан. Широкое распространение в современной онкологии получили алкалоиды из барвинка (Catharanthus roseus) – винбластин и винкристин, а резерпин и аймалин из корней раувольфии (Rauvolfia serpentina) используются в качестве психотропных средств и для понижения давления.

Изопреноиды. По числу выделенных соединений изопреноиды превосходят все другие классы вторичных метаболитов (их более 23 тысяч), но по фармакологической активности они уступают алкалоидам. В данную группу объединены разные по строению соединения. Некоторые из них невозможно заменить синтетическими препаратами, например, таксолы, выделенные из коры тиссового дерева. Они являются чрезвычайно активными цитостатиками, действуя на раковые клетки в очень малых дозах. На них в настоящее время в онкологии возлагают большие надежды.

Наиболее важную группу изопреноидов составляют сердечные гликозиды, или карденолиды. Например, из двух видов наперстянки пурпуровой (Digitalis purpurea) и наперстянки шерстистой (D. lanata) выделено около 50 карденолидов, в том числе дигитоксин. Широко вошёл в медицинскую практику природный гликозид к-строфантозид, являющийся незаменимым средством для оказания скорой помощи: он действует на сердце через 1-3 мин. после внутривенного введения. Этот препарат выделяют из семян лианы Strophanthus kombe, произрастающей в тропических лесах Африки, где местное население использовало сок этого растения в качестве яда для стрел. Сердечные гликозиды из ландыша майского (Cjnvallaria majalis) по активности превосходят другие сердечные гликозиды (например, дигитоксин).

Другие важные для медицины группы изопреноидов представляют собой тритерпеновые гликозиды, или сапонины. Большинство представителей этой группы имеют высокую биологическую активность, которая обусловливает их лечебное действие и применение таких известных биостимуляторов, как женьшень, аралия, солодка.

Стероидные гликозиды отличаются по биологической активности от тритерпеновых. Для современной медицины это исходное сырьё для синтеза многих гормонов и противозачаточных средств. Начиная с 40-х годов прошлого столетия для получения стероидного сырья, в основном, используют гликозид диосгенин из корневищ различных видов лиан из рода Dioscorea. В настоящее время из него получают более 50% всех стероидных лекарственных средств. Исследования последних лет выявили у соединений этой группы и другие важные для медицины свойства.

Фенольные соединения. Самая многочисленная и широко распространённая в растениях группа фенольных соединений - флавоноиды. Они накапливаются в корнях солодки (Glycyrrhiza glabra), траве пустырника (Leonurus cordiaca), цветках бессмертника (Helichryzum arenarium). Флавоноиды отличаются широким спектром фармакологического действия. Они обладают желчегонным, бактерицидным, спазмолитическим, кардиотоническим действием, уменьшают ломкость и проницаемость сосудов (например, рутин), способны связывать и выводить из организма радионуклиды, у них также выявлен противораковый эффект.

Поражающие воображение биосинтетические возможности растений ещё далеко не раскрыты. Из 250 тыс. обитающих на Земле видов обследовано не более 15%, и лишь для некоторых лекарственных растений получены культуры клеток. Так, культуры клеток женьшеня и диоскореи являются основой биотехнологического процесса получения тритерпеновых и стероидных гликозидов. На внедрение этих новых технологий возлагают большие надежды, так как многие редкие или вообще не произрастающие в наших климатических условиях растения можно использовать в виде каллусных или суспензионных культур. К сожалению, техногенный характер цивилизации на нашей планете наносит непоправимый ущерб дикорастущей флоре. Изменяется не только биосфера Земли - среда обитания человека, но и уничтожаются огромные неисследованные кладовые здоровья и долголетия.

Продукты (вещества) вторичного метаболизма синтезируются на основе первичных соединений и могут накапливаться в растениях нередко в значительных количествах, обусловливая тем самым специфику их обмена. В растениях содержится огромное количество веществ вторичного происхождения, которые могут быть разделены на различные группы.

Среди биологически активных веществ (БАВ) наиболее известны такие обширные классы соединений, как алкалоиды, изопреноиды, фенольные соединения и их производные.

Алкалоиды - азотсодержащие органические соединения основного характера, преимущественно растительного происхождения. Строение молекул алкалоидов весьма разнообразно и нередко довольно сложно. Азот, как правило, располагается в гетероциклах, но иногда находится в боковой цепи. Чаще всего алкалоиды классифицируют на основе строения этих гетероциклов либо в соответствии с их биогенетическими предшественниками - аминокислотами. Выделяют следующие основные группы алкалоидов: пирролидиновые, пиридиновые, пиперидиновые, пирролизидиновые, хинолизидиновые, хиназолиновые, хинолиновые, изохинолиновые, индольные, дигидроиндольные (беталаины), имидазоловые, пуриновые, дитерпеновые, стероидные (гликоалкалоиды) и алкалоиды без гетероциклов (протоалкалоиды). Многие из алкалоидов обладают специфическим, часто уникальным физиологическим действием и широко используются в медицине. Некоторые алкалоиды - сильные яды (например, алкалоиды кураре).

Антраценпроизводные - группа природных соединений жёлтой, оранжевой или красной окраски, в основе которых лежит структура антрацена. Они могут иметь различную степень окисленности среднего кольца (производные антрона, антранола и антрахинона) и структуру углеродного скелета (мономерные, димерные и конденсированные соединения). Большинство из них являются производными хризацина (1,8-дигидроксиантрахинона). Реже встречаются производные ализарина (1,2-дигидроксиантрахинона). В растениях производные антрацена могут находиться в свободном виде (агликоны) или в виде гликозидов (антрагликозиды).



Витанолиды - группа фитостероидов, получивших свое название от индийского растения Withania somnifera (L.) Dunal (сем. Solanaceae), из которого было выделено первое соединение этого класса - витаферин А. В настоящее время известно несколько рядов этого класса соединений. Витанолиды - это полиоксистероиды, у которых в положении 17 находится шестичленное лактонное кольцо, а в кольце А - кетогруппа у С 1 . В некоторых соединениях обнаружены 4-бета- гидрокси-, 5-бета -, 6-бета -эпоксигруппировки.

Гликозиды - широко распространённые природные соединения, распадающиеся под влиянием различных агентов (кислота, щелочь или фермент) на углеводную часть и агликон (генин). Гликозидная связь между сахаром и агликоном может быть образована с участием атомов О, N или S (О-, N- или S-гликозиды), а также за счёт С-С атомов (С-гликозиды). Наибольшее распространение в растительном мире имеют О-гликозиды. Между собой гликозиды могут отличаться как структурой агликона, так и строением сахарной цепи. Углеводные компоненты представлены моносахаридами, дисахаридами и олигосахаридами, и соответственно гликозиды называются монозидами, биозидами и олигозидами. Своеобразными группами природных соединений являются цианогенные гликозиды и тиогликозиды (глюкозинолаты) . Цианогенные гликозиды могут быть представлены как производные альфа -гидроксинитрилов, содержащих в своём составе синильную кислоту. Широкое распространение они имеют среди растений сем. Rosaceae, подсем. Prunoideae, концентрируясь преимущественно в их семенах (например, гликозиды амигдалин и пруназин в семенах Amygdalus communis L., Armeniaca vulgaris Lam.).

Тиогликозиды (глюкозинолаты) в настоящее время рассматриваются в качестве производных гипотетического аниона - глюкозинолата, отсюда и второе название. Глюкозинолаты найдены пока только у двудольных растений и характерны для сем. Brassicaceae, Capparidaceae, Resedaceae и других представителей порядка Capparales. В растениях они содержатся в виде солей со щелочными металлами, чаще всего с калием (например, глюкозинолат синигрин из семян Brassica juncea (L.) Czern. и В. nigra (L.) Koch).

Изопреноиды - обширный класс природных соединений, рассматриваемых как продукты биогенного превращения изопрена. К ним относятся различные терпены, их производные - терпеноиды и стероиды. Некоторые изопреноиды - структурные фрагменты антибиотиков, некоторых витаминов, алкалоидов и гормонов животных.

Терпены и терпеноиды - ненасыщенные углеводороды и их производные состава (С 5 Н 8) n , где n = 2 или n > 2. По числу изопреновых звеньев их делят нанесколько классов: моно-, сескви-, ди-, три-, тетра- и политерпеноиды.

Монотерпеноиды (С 10 Н 16) и сесквитерпеноиды (С 15 Н 24) являются обычными компонентами эфирных масел. К группе циклопентаноидных монотерпеноидов относятся иридоидные гликозиды (псевдоиндиканы) , хорошо растворимые в воде и часто обладающие горьким вкусом. Название «иридоиды»связано со структурным и, возможно, биогенетическим родством агликона с иридодиалем, который был получен из муравьев рода Iridomyrmex; «псевдоиндиканы» - с образованием синей окраски в кислой среде. По числу углеродных атомов скелета агликоновой части иридоидные гликозиды подразделяются на 4 типа: С 8 , С 9 , С 10 и С 14 . Они присущи лишь покрытосеменным растениям класса двудольных, и к наиболее богатым иридоидами относятся семейства Scrophulariaceae, Rubiaceae, Lamiaceае, Verbenaceae и Bignoniaceae.

Дитерпеноиды (С 20 Н 32) входят главным образом в состав различных смол. Они представлены кислотами (резиноловые кислоты), спиртами (резинолы) и углеводородами (резены). Различают собственно смолы (канифоль, даммара), масло-смолы (терпентин, канадский бальзам), камеде-смолы (гуммигут), масло-камеде-смолы (ладан, мирра, асафетида). Масло-смолы, представляющие собой раствор смол в эфирном масле и содержащие кислоты бензойную и коричную, называют бальзамами. В медицине применяют перувианский, толутанский, стираксовый бальзамы и др.

Тритерпеноиды (С 30 Н 48) по преимуществу встречаются в виде сапонинов, агликоны которых представлены пентациклическими (производные урсана, олеанана, лупана, гопана и др.) или тетрациклическими (производные даммарана, циклоартана, зуфана) соединениями.

К тетратерпеноидам (С 40 Н 64) относятся жирорастворимые растительные пигменты жёлтого, оранжевого и красного цвета - каротиноиды, предшественники витамина А (провитамины А). Они делятся на каротины (ненасыщенные углеводороды, не содержащие кислорода) и ксантофиллы (кислородсодержащие каротиноиды, имеющие гидрокси-, метокси-, карбокси-, кето- и эпоксигруппы). Широко распространены в растениях альфа -, бета - и гамма -каротины, ликопин, зеаксантин, виолаксантин и др.

Последнюю группу изопреноидов состава (С 5 Н 8) n представляют политерпеноиды , к которым относятся природный каучук и гутта.

Кардиотонические гликозиды , или сердечные гликозиды , - гетерозиды, агликоны которых являются стероидами, но отличаются от прочих стероидов наличием в молекуле вместо боковой цепи при С 17 ненасыщенного лактонного кольца: пятичленного бутенолидного (карденолиды ) или шестичленного кумалинового кольца (буфадиенолиды ). Все агликоны кардиотонических гликозидов имеют у С 3 и С 14 гидроксильные группы, а у С 13 - метильную. При С 10 может быть альфа -ориентированная метильная, альдегидная, карбинольная или карбоксильная группы. Кроме того, они могут иметь дополнительные гидроксильные группы у С 1 , С 2 , С 5 , С 11 , С 12 и С 16 ; последняя иногда бывает ацилирована муравьиной, уксусной или изовалериановой кислотой. Кардиотонические гликозиды применяются в медицине для стимуляции сокращений миокарда. Часть из них - диуретики.

Ксантоны - класс фенольных соединений, имеющих структуру дибензо-гамма -пирона. В качестве заместителей содержат в молекуле гидрокси-, метокси-, ацетокси-, метилендиокси- и другие радикалы. Известны соединения, содержащие пирановое кольцо. Особенностью ксантонов является распространение хлорсодержащих производных. Ксантоны находят в свободном виде и в составе О- и С-гликозидов. Из ксантоновых С-гликозидов наиболее известен мангиферин, который одним из первых введен в медицинскую практику.

Кумарины - природные соединения, в основе строения которых лежит 9,10-бензо-альфа -пирон. Их можно также рассматривать как производные кислоты орто -гидроксикоричной (орто -кумаровой). Они классифицируются на окси- и метоксипроизводные, фуро- и пиранокумарины, 3,4-бензокумарины и куместаны (куместролы).

Лигнаны - природные фенольные вещества, производные димеров фенилпропановых единиц (С 6 -С 3), соединенных между собой бета -углеродными атомами боковых цепей. Разнообразие лигнанов обусловлено наличием различных заместителей в бензольных кольцах и характером связи между ними, степенью насыщенности боковых цепей и др. По структуре они делятся на несколько групп: диарилбутановый (кислота гваяретовая), 1-фенилтетрагидронафталиновый (подофиллотоксин, пельтатины), бензилфенилтетрагидрофурановый (ларицирезинол и его глюкозид), дифенилтетрагидрофурофурановый (сезамин, сирингарезинол), дибензоциклооктановый (схизандрин, схизандрол) типы и др.

Лигнины представляют собой нерегулярные трёхмерные полимеры, предшественниками которых служат гидроксикоричные спирты (пара -кумаровый, конифериловый и синаповый), и являются строительным материалом клеточных стенок древесины. Лигнин содержится в одревесневших растительных тканях наряду с целлюлозой и гемицеллюлозами и участвует в создании опорных элементов механической ткани.

Меланины - полимерные фенольные соединения, которые в растениях встречаются спорадически и представляют собой наименее изученную группу природных соединений. Окрашены они в чёрный или чёрно-коричневый цвет и называются алломеланинами. В отличие от пигментов животного происхождения, они не содержат азота (или его очень мало). При щелочном расщеплении образуют пирокатехин, протокатеховую и салициловую кислоты.

Нафтохиноны - хиноидные пигменты растений, которые найдены в различных органах (в корнях, древесине, коре, листьях, плодах и реже в цветках). В качестве заместителей производные 1,4-нафтохинона содержат гидроксильные, метильные, пренильные и другие группы. Наиболее известным является красный пигмент шиконин, обнаруженный в некоторых представителях сем. Boraginaceae (виды родов Arnebia Forrsk., Echium L., Lithospermum L. и Onosma L.).

Сапонины (сапонизиды) - гликозиды, обладающие гемолитической и поверхностной активностью (детергенты), а также токсичностью для холоднокровных животных. В зависимости от строения агликона (сапогенина), их делят на стероидные и тритерпеноидные. Углеводная часть сапонинов может содержать от 1 до 11 моносахаридов. Наиболее часто встречаются D-глюкоза, D-галактоза, D-ксилоза, L-рамноза, L-арабиноза, D-галактуроновая и D-глюкуроновая кислоты. Они образуют линейные или разветвленные цепи и могут присоединяться по гидроксильной или карбоксильной группе агликона.

Стероиды - класс соединений, в молекуле которых присутствует циклопентанпергидрофенантреновый скелет. К стероидам относят стерины, витамины группы D, стероидные гормоны, агликоны стероидных сапонинов и кардиотонических гликозидов, экдизоны, витанолиды, стероидные алкалоиды.

Растительные стерины, или фитостерины, - спирты, содержащие 28-30 углеродных атомов. К ним принадлежат бета -ситостерин, стигмастерин, эргостерин, кампестерин, спинастерин и др. Некоторые из них, например бета -ситостерин, находят применение в медицине. Другие используются для получения стероидных лекарственных средств - стероидных гормонов, витамина D и др.

Стероидные сапонины содержат 27 атомов углерода, боковая цепь их образует спирокетальную систему спиростанолового или фураностанолового типов. Один из стероидных сапогенинов - диосгенин, выделенный из корневищ диоскореи, - является источником для получения важных для медицины гормональных препаратов (кортизона, прогестерона).

Стильбены можно рассматривать как фенольные соединения с двумя бензольными кольцами, имеющие структуру С 6 -С 2 -С 6 . Это сравнительно небольшая группа веществ, которые встречаются в основном в древесине различных видов сосны, ели, эвкалипта, являются структурными элементами таннидов.

Танниды (дубильные вещества) - высокомолекулярные соединения со средней молекулярной массой порядка 500-5000, иногда до 20000, способные осаждать белки, алкалоиды и обладающие вяжущим вкусом. Танниды подразделяют на гидролизуемые, распадающиеся в условиях кислотного или энзиматического гидролиза на простейшие части (к ним относятся галлотаннины, эллаготаннины и несахаридные эфиры карбоновых кислот), и конденсированные, не распадающиеся под действием кислот, а образующие продукты конденсации – флобафены. Структурно они могут рассматриваться как производные флаван-3-олов (катехинов), флаван-3,4-диолов (лейкоантоцианидинов) и гидроксистильбенов.

Фенольные соединения представляют собой один из наиболее распространённых в растительных организмах и многочисленных классов вторичных соединений с различной биологической активностью. К ним относятся вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эти соединения весьма неоднородны по химическому строению, в растениях встречаются в виде мономеров, димеров, олигомеров и полимеров.

В основу классификации природных фенолов положен биогенетический принцип. Современные представления о биосинтезе позволяют разбить соединения фенольной природы на несколько основных групп, расположив их в порядке усложнения молекулярной структуры.

Наиболее простыми являются соединения с одним бензольным кольцом - простые фенолы, бензойные кислоты, фенолоспирты, фенилуксусные кислоты и их производные. По числу ОН-групп различают одноатомные (фенол), двухатомные (пирокатехин, резорцин, гидрохинон) и трёхатомные (пирогаллол, флороглюцин и др.) простые фенолы. Чаще всего они находятся в связанном виде в форме гликозидов или сложных эфиров и являются структурными элементами более сложных соединений, в том числе полимерных (дубильные вещества).

Более разнообразными фенолами являются производные фенилпропанового ряда (фенилпропаноиды), содержащие в структуре один или несколько фрагментов С 6 -С 3 . К простым фенилпропаноидам можно отнести гидроксикоричные спирты и кислоты, их сложные эфиры и гликозилированные формы, а также фенилпропаны и циннамоиламиды.

К соединениям, биогенетически родственным фенилпропаноидам, относятся кумарины, флавоноиды, хромоны, димерные соединения - лигнаны и полимерные соединения - лигнины.

Немногочисленные группы фенилпропаноидных соединений составляют оригинальные комплексы, сочетающие в себе производные флавоноидов, кумаринов, ксантонов и алкалоидов с лигнанами (флаволигнаны, кумаринолигнаны, ксантолигнаны и алкалоидолигнаны). Уникальной группой биологически активных веществ являются флаволигнаны Silybum marianum (L.) Gaertn. (силибин, силидианин, силикристин), которые проявляют гепатозащитные свойства.

Фитонциды - это необычные соединения вторичного биосинтеза, продуцируемые высшими растениями и оказывающие влияние на другие организмы, главным образом микроорганизмы. Наиболее активные антибактериальные вещества содержатся в луке репчатом (Allium сера L.) и чесноке (Allium sativum L.), из последнего выделено антибиотическое соединение аллицин (производное аминокислоты аллиина).

Флавоноиды относят к группе соединений со структурой С 6 -С 3 -С 6 , и большинство из них представляют собой производные 2-фенилбензопирана (флавана) или 2-фенилбензо-гамма -пирона (флавона). Классификация их основана на степени окисленности трёхуглеродного фрагмента, положении бокового фенильного радикала, величине гетероцикла и других признаках. К производным флавана принадлежат катехины, лейкоантоцианидины и антоцианидины; к производным флавона - флавоны, флавонолы, флаваноны, флаванонолы. К флавоноидам относятся также ауроны (производные 2-бензофуранона или 2-бензилиден кумаранона), халконы и дигидрохалконы (соединения с раскрытым пирановым кольцом). Менее распространены в природе изофлавоноиды (с фенильным радикалом у С 3), неофлавоноиды (производные 4-фенилхромона), бифлавоноиды (димерные соединения, состоящие из связанных С-С-связью флавонов, флаванонов и флавон-флаванонов). К необычным производным изофлавоноидов относятся птерокарпаны и ротеноиды , которые содержат дополнительный гетероцикл. Птерокарпаны привлекли к себе внимание после того, как было выяснено, что многие из них играют роль фитоалексинов , выполняющих защитные функции против фитопатогенов. Ротенон и близкие к нему соединения токсичны для насекомых, поэтому являются эффективными инсектицидами.

Хромоны - соединения, получающиеся в результате конденсации гамма -пиронового и бензольного колец (производные бензо-гамма -пирона). Обычно все соединения этого класса имеют в положении 2 метильную или оксиметильную (ацилоксиметильную) группу. Классифицируются они по тому же принципу, что и кумарины: по числу и типу циклов, сконденсированных с хромоновым ядром (бензохромоны, фурохромоны, пиранохромоны и др.).

Экдистероиды - полиоксистероидные соединения, обладающие активностью гормонов линьки насекомых и метаморфоза членистоногих. Наиболее известными природными гормонами являются альфа -экдизон и бета -экдизон (экдистерон). В основе строения экдизонов лежит стероидный скелет, где в положении 17 присоединяется алифатическая цепочка из 8 углеродных атомов. Согласно современным представлениям, к истинным экдистероидам относятся все стероидные единения, имеющие цис -сочленение колец А и В, 6-кетогруппу, двойную связь между С 7 и С 8 и 14-альфа -гидроксильную группу, независимо от их активности в тесте на гормон линьки. Число и положение других заместителей, включая ОН-группы, различны. Фитоэкдистероиды относятся к широко распространённым вторичным метаболитам (установлено более 150 различных структур) и более вариабельны, чем зооэкдистероиды. Общее количество углеродных атомов у соединения данной группы может быть от 19 до 30.

Эфирные масла - летучие жидкие смеси органических веществ, вырабатываемых растениями, обусловливающие их запах. В состав эфирных масел входят углеводороды, спирты, сложные эфиры, кетоны, лактоны, ароматические компоненты. Преобладают терпеноидные соединения из подклассов монотерпеноидов, сесквитерпеноидов, изредка дитерпеноидов; кроме того, довольно обычны «ароматические терпеноиды» и фенилпропаноиды. Растения, содержащие эфирные масла (эфироносы), широко представлены в мировой флоре. Особенно богаты ими растения тропиков и сухих субтропиков.

Подавляющее большинство продуктов вторичного метаболизма может быть синтезировано чисто химическим путём в лаборатории, и в отдельных случаях такой синтез оказывается экономически выгодным. Однако не следует забывать, что в фитотерапии значение имеет вся сумма биологических веществ, накапливающихся в растении. Поэтому сама по себе возможность синтеза не является в этом смысле решающей.

A. ОПРЕДЕЛЕНИЕ

С точки зрения биогенеза антибиотики рассматривают как вторичные метаболиты. Вторичные метаболиты - это низкомолекулярные природные продукты, которые 1) синтезируются только некоторыми видами микроорганизмов; 2) не выполняют каких-либо явных функций при росте клеток и часто образуются после прекращения роста культуры; клетки, синтезирующие эти вещества, легко утрачивают способность к синтезу в результате мутаций; 3) часто образуются в виде комплексов сходных продуктов.

Первичные метаболиты - нормальные продукты обмена клетки, такие как аминокислоты, нуклеотиды, коферменты и т. д., необходимые для роста клеток.

Б. ВЗАИМОСВЯЗЬ МЕЖДУ ПЕРВИЧНЫМ

И ВТОРИЧНЫМ МЕТАБОЛИЗМОМ

Изучение биосинтеза антибиотиков состоит в установлении последовательности ферментативных реакций, в ходе которых один или несколько первичных метаболитов (или промежуточных продуктов их биосинтеза) превращаются в антибиотик. Необходимо помнить о том, что образование вторичных метаболитов, особенно в больших количествах, сопровождается значительными изменениями в первичном метаболизме клетки, поскольку при этом клетка должна синтезировать исходный материал, поставлять энергию, например в форме АТР, и восстановленные коферменты. Неудивительно поэтому, что при сравнении штаммов, синтезирующих антибиотики, со штаммами, не способными к их синтезу, обнаруживаются значительные различия в концентрации ферментов, которые прямо не участвуют в синтезе данного антибиотика.

B. ОСНОВНЫЕ БИОСИНТЕТИЧЕСКИЕ ПУТИ

Ферментативные реакции биосинтеза антибиотиков в принципе не отличаются от реакций, в ходе которых образуются первичные метаболиты. Их можно рассматривать как вариа

ции реакций биосинтеза первичных метаболитов, конечно, за некоторыми исключениями (например, есть антибиотики, содержащие нитрогруппу - функциональную группу, которая никогда не встречается у первичных метаболитов и которая образуется при специфическом окислении аминов).

Механизмы биосинтеза антибиотиков можно разделить на три основные категории.

1. Антибиотики, происходящие от единственного первичного метаболита. Путь их биосинтеза состоит из последовательности реакций, модифицирующих исходный продукт таким же образом, как и при синтезе аминокислот или нуклеотидов.

2. Антибиотики, происходящие от двух или трех разных первичных метаболитов, которые модифицируются и конденсируются с образованием сложной молекулы. Аналогичные случаи наблюдаются и в первичном метаболизме при синтезе некоторых коферментов, например фолиевой кислоты или кофермен- та А.

3. Антибиотики, берущие начало от продуктов полимеризации нескольких сходных метаболитов с образованием основной структуры, которая в дальнейшем может модифицироваться в ходе других ферментативных реакций.

В результате полимеризации образуются антибиотики четырех типов: 1) полипептидные антибиотики, образующиеся путем конденсации аминокислот; 2) антибиотики, образованные из ацетат-пропионатных единиц в реакциях полимеризации, сходных с реакцией биосинтеза жирных кислот; 3) терпеноидные антибиотики, происходящие из ацетатных единиц в пути синтеза изопреноидных соединений; 4) аминогликозидные антибиотики, образующиеся в реакциях конденсации, сходных с реакциями биосинтеза полисахаридов.

Эти процессы сходны с процессами полимеризации, обеспечивающими образование некоторых компонентов мембраны и клеточной стенки.

Необходимо подчеркнуть, что основная структура, полученная путем полимеризации, далее обычно модифицируется; к ней даже могут присоединиться молекулы, образующиеся с помощью других биосинтетических путей. Особенно часто встречаются гликозидные антибиотики - продукты конденсации одного или нескольких сахаров с молекулой, синтезированной в пути 2.

Г. СИНТЕЗ аСЕМЕЙСТВ» АНТИБИОТИКОВ

Часто штаммы микроорганизмов синтезируют несколько близких в химическом и биологическом отношении антибиотиков, составляющих «семейство» (антибиотический комплекс). Образование «семейств» характерно не только для биосинтеза

Антибиотиков, а является общим свойством вторичного метаболизма, связанным с довольно большим" размером промежуточных продуктов. Биосинтез комплексов родственных соединений осуществляется в ходе следующих метаболических путей.

1. Биосинтез «ключевого» метаболита в одном из путей, описанных в предыдущем разделе.

Рифамицин У


окисл.

Рис. 6.1. Пример метаболического дерева: биосинтез рифамицина (объяснения см. в тексте; структурные формулы соответствующих соединений приведены на рис. 6.17 и 6.23).

2. Модификация ключевого метаболита с помощью довольно распространенных реакций, например путем окисления метальной группы в спиртовую и далее в карбоксильную, восстановления двойных связей, дегидрирования, метилирования, этерификации и т. д.

3. Один и тот же метаболит может быть субстратом двух или нескольких таких реакций, приводящих к образованию двух или большего числа различных продуктов, которые в свою очередь могут подвергаться различным превращениям с участием ферментов, давая начало «метаболическому дереву».

4. Один и тот же метаболит может образовываться в двух (или более) различных путях, в которых изменяется только
порядок ферментных реакций, давая начало «метаболической сети».

Довольно своеобразные концепции метаболического дерева и метаболической сети можно пояснить следующими примерами: биогенез семейства рифамицинов (дерево) и эритромицинов (сеть). Первым метаболитом при биогенезе семейства рифамицинов является проторифамицин I (рис. 6.1), который можно рассматривать как ключевой метаболит. В последовательности


реакций, порядок которых неизвестен, проторифамицин I превращается в рифамицин W и рифамицин S, завершая часть синтеза с использованием единственного пути («ствол» дерева). Рифамицин S является начальной точкой разветвления нескольких альтернативных путей: конденсация с двууглеродным фрагментом дает начало рифамицину О и рафимицинам L и В. Последний в результате окисления анза-цепи превращается в рифамицин Y. Отщепление одноуглеродного фрагмента при окислении рифамицина S ведет к образованию рифамици- на G, а в результате неизвестных реакций рифамицин S превращается в так называемый рифамициновый комплекс (рифа- мицины А, С, D и Е). Окисление метальной группы при С-30 дает начало рифамицину R.

Ключевым метаболитом семейства эритромицина является эритронолид В (Эр.В), который превращается в эритромицинА (наиболее сложный метаболит) с помощью следующих четырех реакций (рис. 6.2): 1) гликозилирование по положению 3 пу

тем конденсации с микарозой (Мик.) (реакция I); 2) превращение микарозы в кладинозу (Клад.) в результате метилирования (реакция II); 3) превращение эритронолида В в эри- тронолид А (Эр.А) в результате гидроксилирования по положению 12 (реакция III); 4) конденсация с дезозамином (Дез.) в положении 5 (реакция IV).

Поскольку порядок этих четырех реакций может варьировать, возможны различные метаболические пути, а вместе взятые они составляют метаболическую сеть, представленную на рис. 6.2. Нужно отметить, что имеются также пути, которые представляют собой комбинацию дерева и сети.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство сельского хозяйства Российской Федерации

Департамент научно технологической политики и образования

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный аграрный университет»

Факультет: Биотехнологий и ветеринарной медицины

Кафедра: «Ветеринарно санитарная экспертиза, заразные болезни и морфология»

ДОКЛАД

Дисциплина: «Биотехнология»

на тему: «Первичные и вторичные метаболиты микроорганизмов»

Выполнила:

Понышева Е.С.

Проверил:

Спивак Марина Ефимовна

Волгоград 2018 г

Биотехнология получения первичных метаболитов

Первичные метаболиты - низкомолекулярные соединения, необходимые для роста микроорганизмов: одни из них являются строительными блоками макромолекул, другие - участвуют в синтезе коферментов. Среди наиболее важных для промышленности первичных метаболитов можно выделить ферменты, аминокислоты, витамины.

Производство аминокислот

В промышленности аминокислоты получают:

1) гидролизом природного белоксодержащего сырья; 2) химическим синтезом; 3) микробиологическим синтезом; 4) биотрансформацией предшественников аминокислот с помощью микроорганизмов или выделенных из них.

Наиболее перспективен и экономически выгоден микробиологический синтез аминокислот. Преимущество его состоит в возможности получения L-аминокислот на основе возобновляемого сырья. Среди продуцентов аминокислот используются дрожжи (30 %), актиномицеты (30 %), бактерии (20 %). Brevibacterium flavum и Corynebacterium glutamicum более трети сахаров превращают в лизин. Для селекции продуцентов используются микроорганизмы, относящиеся к родам Micrococcus, Brevibacterium, Corynebacterium, Arthrobacter.

Производство витаминов

Витамины - группа незаменимых органических соединений различной химической природы, необходимых любому организму в ничтожных концентрациях и выполняющих в нем каталитические и регуляторные функции. Способностью к синтезу витаминов обладают лишь автотрофные организмы. Микробиологическим способом можно получить практически все известные витамины. Однако экономически более целесообразно получать витамины выделением из природных источников или с помощью химического синтеза. С помощью микроорганизмов целесообразно получать сложные по строению витамины: в-каротин, В2, В12 и предшественники витамина D.

Производство органических кислот

В настоящее время биотехнологическими способами получают в промышленных масштабах ряд органических кислот. Из них лимонную, глюконовую, кетоглюконовую и итаконовую кислоты получают лишь микробиологическим способом, молочную, салициловую и уксусную - как химическим, так и микробиологическим, яблочную - химическим и энзиматическим путем. Уксусную кислоту продуцируют Aсеtobacter и Gluconobacter, лимонную - Aspergillus niger, Aspergillus wentii, молочную - Lactobacillus delbrueckii.

Биотехнология получения вторичных метаболитов

Принципы получения основаны на особенностях их образования клетками микроорганизмов. Биосинтез вторичных метаболитов фазоспецифичен и происходит после завершения стадии роста, в идиофазе, благодаря чему их и называют идиолитами.

Получение антибиотиков

Антибиотики - самый большой класс фармацевтических соединений, синтез которых осуществляется микробными клетками. К классу относятся противогрибковые агенты, противоопухолевые лекарства и алкалоиды. Они используются в растениеводстве, животноводстве, ветеринарии, пищевой промышленности, медицине.

Существует несколько способов получения как природных, так и полусинтетических антибиотиков:

1) ферментация микроорганизма-продуцента с подходящим пред-шественником, что индуцирует синтез антибиотиков в идиофазе;

2) использование блокированных мутантов. У которых блокирован синтез нужного антибиотика. Используя низкую субстратную специфичность ферментов и вводя аналоги предшественников антибиотика, их переводят в аналоги самого антибиотика.

Этот процесс называется биосинтез, или мутасинтез:

а) предполагается последовательность реакций, ведущая к синтезу антибиотика;

б) отсутствие синтеза антибиотика у «блокированного» мутанта; в) синтез модифицированного антибиотика после введения аналога предшественника (D*)

Получение промышленно важных стероидов

Стероиды - большая группа биологически важных соединений, среди которых - половые гормоны, сердечные гликозиды, желчные кислоты, витамины, алкалоиды, регуляторы роста растений. В основе стероидов лежит скелет пергидроциклопентанофенантрена.

Биотрансформация - реакции превращения исходных органических соединений (предшественников) в целевой продукт с помощью клеток живых организмов или ферментов, выделенных из них. Способность клеток микроорганизмов к высокоспецифичной биотрансформации используется в производстве стероидов. Использование абсолютной стереоспецифичности и субстратной специфичности ферментов клеток позволило разработать условия осуществления множества химических реакций для структурных перестроек стероидов. В результате были получены новые соединения с лучшими фармакологическими свойствами.

Ферменты

Ферменты -- биологические катализаторы. Они катализируют тысячи химических реакций, из которых слагается метаболизм микроорганизма. В настоящее время известно около двух тысяч ферментов.

Ферменты представляют собой белки с молекулярной массой от 10000 до нескольких миллионов. Название ферменту дается по веществу, на которое он действует с изменением окончания на «аза». Например, целлюлаза катализирует гидролиз целлюлозы до целлобиозы, уреаза катализирует гидролиз мочевины (urea) до аммиака и СО2 и т. п. Однако чаще фермент получает название, которое указывает на природу катализируемой, им химической реакции.

Современная классификация ферментов также строится с учетом природы катализируемых ими реакций. Согласно разработанной комиссией по ферментам Международного биохимического союза классификации, они подразделяются на шесть главных классов.

Оксидоредуктазы -- это ферменты, катализирующие окислительно-восстановительные реакции. Они играют большую роль в процессах биологического получения энергии. К ним относятся дегидрогеназы (НАД, НАДФ, ФАД), цитохромы (b, с, с1 а, а3)г ферменты, участвующие в переносе водорода, электронов и кислорода, и др.

Трансферазы. Катализируют перенос отдельных радикалов, частей молекул или целых атомных группировок от одних соединений к другим. Например, ацетилтрансферазы переносят остатки уксусной кислоты -- СН3СО, а также молекул жирных кислот; фосфотрансферазы, или киназы, обусловливают перенос остатков фосфорной кислоты Н2Р032-. Известны многие другие трансферазы (аминотраисферазы, фосфорилазы и т. д.).

Гидролазы катализируют реакции расщепления и синтеза таких сложных соединений, как белки, жиры и углеводы, с участием воды. К этому классу относятся протеолитические ферменты (или пептидгидролазы), действующие на белки или пептиды; гидролазы глюкозидов, осуществляющие каталитическое расщепление углеводов и глюкозидов (в-фруктофуранозидаза, б - глюкозидаза, а - и в-амилаза, в-галактозидаза и др.); эстеразы, катализирующие расщепление и синтез сложных эфиров (липазы, фосфатазы).

Лиазы включают в себя ферменты, катализирующие отщепление от субстратов определенных химических групп с образованием двойных связей или присоединение отдельных групп или радикалов к двойным связям. Так, пируватдекарбоксилаза катализирует отщепление С02 от пировиноградной кислоты:

К лиазам относится также фермент альдолаза, расщепляющий шестиуглеродную молекулу фруктозо-1,6-дифосфата на два трехуглеродных соединения. Альдолаза имеет большое значение в процессе обмена веществ.

Изомеразы осуществляют превращение органических соединений в их изомеры. При изомеризации происходит внутримолекулярное перемещение атомов, атомных группировок, различных радикалов и т. п. Изомеризации подвергаются углеводы и их производные, органические кислоты, аминокислоты и т. д. Ферменты этой группы играют большую роль в ряде процессов метаболизма. К ним относятся триозофосфатизомераза, глюкозофосфатизомераза и др.

Лигазы катализируют синтез сложных органических соединений из простых. Например, аспарагинсинтетаза осуществляет синтез амида аспарагина из аспарагиновой кислоты и аммиака с обязательным участием аденозинтрифосфорной кислоты (АТФ), дающей энергию для этой реакции:

Аспарагиновая кислота + NH3 + АТФ -* аспарагин + АДФ + Н3Р04

К группе лигаз относятся также карбоксилазы, катализирующие присоединение С02 к различным органическим кислотам. Например, фермент пируваткарбоксилаза катализирует синтез щавелевоуксусной кислоты из пировиноградной и С02.

В соответствии со строением ферменты делятся на два больших класса:

1) представляющие собой простые белки,

2) являющиеся сложными белками.

К первому классу относятся гидролитические ферменты, ко второму, более многочисленному классу,-- ферменты, осуществляющие функции окисления и участвующие в реакциях переноса различных химических групп. Ферменты второго класса, кроме белковой части, называемой апоферментом, имеют и небелковую группу, определяющую активность фермента, -- кофактор. В отдельности эти части (белковая и небелковая) лишены ферментативной активности. Они приобретают характерные свойства ферментов только после соединения. Комплекс апофермента с кофактором называется холоферментом.

Кофакторами могут быть либо ионы металлов (Fe, Си, Со, Zn, Мо и др.), либо сложные органические соединения, называемые коферментами, либо те и другие. Коферменты обычно играют роль промежуточных переносчиков электронов, атомов, групп, которые в результате ферментативной реакции перемещаются с одного соединения на другое. Некоторые коферменты прочно связаны с ферментным белком; их называют простетической группой фермента. Многие коферменты или идентичны определенным витаминам группы В, или являются их производными.

К коферментам относятся, например, активные группы дегидрогеназ -- никотинамидадениндинуклеотид (НАД) или никотинамидадениндинуклеотидфосфат (НАДФ). В эти коферменты входит никотиновая кислота -- один из витаминов группы В. Витамины имеются в составе и других коферментов. Так, тиамин (витамин В1) входит в состав тиаминпирофосфокиназы, участвующей в обмене пировиноградной кислоты, пантотеновая кислота является составной частью кофермента А, а рибофлавин (витамин В2) представляет собой простетическую группу флавопротеиновых ферментов. Важное значение витаминов в питании живых организмов обусловлено именно тем, что они находятся в составе коферментов.

По современным представлениям, ферменты ускоряют химические реакции, понижая свободную энергию активации (количество энергии, необходимое для перевода при данной температуре всех молекул одного моля вещества в активированное состояние).

Главное свойство ферментов, отличающее их от других катализаторов, -- это специфичность катализируемых ими ферментативных реакций. Каждый фермент катализирует только одну определенную реакцию.

В связи с высокой специфичностью ферментативных реакций полагают, что участок молекулы фермента, называемый каталитическим центром, к которому присоединяется молекула субстрата, обладает определенной пространственной конфигурацией, которая «впору» лишь молекуле субстрата и не соответствует никаким другим молекулам.

Активность ферментов зависит от различных факторов: относительной концентрации фермента и субстрата температуры, pH и др. Для каждого фермента существует свой оптимум температуры и pH. Многие ферментативные реакции обратимы, хотя активность фермента редко бывает одинаковой в обоих направлениях.

Несмотря на незначительные размеры, каждая клетка микроорганизма может производить множество отличных друг от друга ферментов, обладающих различными функциями. Обычно ферменты, участвующие в метаболизме, содержатся в клетке организма и поэтому называются внутриклеточными ферментами, или эндоферментами. Некоторые ферменты выделяются клетками микроорганизмов в окружающую среду и называются внеклеточными ферментами, или экзоферментами. Как правило, во внешнюю среду выделяются гидролитические ферменты, разлагающие соединения с большой молекулярной массой, которые не могут проникнуть в клетку микроорганизма. Продукты же разложения легко поглощаются клеткой и используются ею в качестве питательных веществ.

Ферменты играют значительную роль в питании микроорганизмов. Большое число разнообразных ферментов, синтезируемых клетками микроорганизмов, позволяет им использовать для питания многочисленные соединения (углеводы, белки, жиры, воска, нефть, парафины и т. д.) путем их расщепления.

Производство аминокислот

Производство аминокислот в мире постоянно растет и в настоящее время составляет около 400 тыс. тонн/год, хотя потребность в них оценивается гораздо выше. Как уже отмечалось, недостаток в рационе аминокислот (особенно, незаменимых) отрицательно сказывается на росте и развитии. Так, добавка к кормам животных нескольких долей % дефицитной кислоты может повысить кормовую ценность белка более чем в два раза. Из всех возможных способов получения аминокислот (химическим путем, микробиологическим и др.) предпочтение отдается микробиологическому: хотя организацию микробного производства нельзя назвать простой, ее преимущество состоит в синтезе оптически чистых (L-аминокислот), тогда как при химическом синтезе получается рацемическая смесь L- и D-аминокислот, которую трудно разделить. Микробный синтез аминокислот основан на культивировании строго определенного продуцента целевой кислоты в среде заданного состава при строго определенных параметрах ферментации. Продуцентами являются штаммы бактерий, полученные мутантной селекцией или с помощью методов генной инженерии. Бактерии-мутанты, с одной стороны, утратили способность самостоятельно синтезировать некоторые вещества, а с другой стороны, приобрели способность к сверхсинтезу целевой аминокислоты. Уже к 70-м годам прошлого века были получены микробы-суперпродуценты из родов Brevibacterium,Corynebacterium, Micrococcus и др. с помощью которых возможно производить все известные аминокислоты. В настоящее время имеются суперпродуценты, у которых количество синтезируемого специфического белка достигает 10-50 % (здесь важнейшую роль играют многокопийные плазмиды, несущие встроенные гены).

Технология получения аминокислот базируется на принципах ферментации продуцентов и выделения первичных метаболитов, т. е. размножают маточную культуру вначале на агаризованной среде в пробирках, затем - на жидкой среде в колбах, инокуляторах и посевных аппаратах, а затем - в основных ферментаторах. Если аминокислота предусмотрена в качестве добавки к кормам, то биотехнологический процесс кормового продукта включает следующие стадии: ферментацию, стабилизацию аминокислоты в культуральной жидкости перед упариванием, вакуум-упаривание, стандартизацию упаренного раствора при добавлении наполнителя, высушивание и упаковку готового продукта, в котором должно содержаться не более 10 % основного вещества. Если же аминокислота используется в качестве лекарственного препарата, в этом случае получают изолированные чистые кристаллы, которые высушивают под вакуумом и упаковывают.

Известны два способа получения аминокислот: одноступенчатый и двухступенчатый. Согласно первому способу, например, мутантный ауксотрофный штамм - продуцент аминокислоты - культивируют на оптимальной для биоситеза среде.

В двухступенчатом способе микроб-продуцент культивируют в среде, где он получает и синтезирует все необходимые ингредиенты для последующего синтеза целевого продукта. Схема двухступенчатого процесса может быть представлена в следующем виде: Если ферменты биосинтеза аминокислоты накапливаются внутриклеточно, то после 1-й ступени клетки сепарируют, дезинтегрируют и применяют клеточный сок. В других случаях для целей биосинтеза целевых продуктов применяют непосредственно клетки.

Глутаминовая кислота - это первая аминокислота, полученная микробиологическим путем. Мутантов, обеспечивающих сверхсинтез этой кислоты, не получено, а «перепроизводство» этой аминокислоты связано с особыми условиями, при которых нарушается синтез мембранных фосфолипидов. Глутаминовая кислота синтезируется исключительно культурами Corynebacterium glutamicum и Brevibacterium flavum. Субстратами для ее получения являются глюкоза и уксусная кислота, а в начале 60-х гг. прошлого столетия использовали и н-парафины. Особые условия для роста культур создаются добавлением к культуральной жидкости пенициллина, который подавляет синтез клеточной стенки, или уменьшением (по сравнению с оптимальной) концентрации биотина (витамина В7) в среде, который индуцирует структурно-функциональные изменения в клеточной мембране, благодаря чему увеличивается ее проницаемость для глутаминовой кислоты, выходящей из клетки в культуральную жидкость. Натриевая соль глутаминовой кислоты широко применяется в пищевой промышленности для улучшения вкуса продуктов питания в консервированном и замороженном виде.

Витамины

Витамины - низкомолекулярные органические вещества, которые имеют биологическую активность. В естественной среде источниками этих представителей БАВ являются растения и микроорганизмы. В промышленности витамины получают в основном химическим синтезом. Однако микробиологическое производство этих соединений также имеет место. Так, например, менахиноны и кобаламины - продукт исключительно микробный. Микробиологическим путем получают всего несколько витаминов: В12 (цианокобаламин), В2 (рибофлавин), витамин С и эргостерин.

Довольно перспективным направлением в биотехнологии является микробиологический синтез биотина, который применяется в животноводстве в качестве кормовой добавки. В настоящее время для получения биотина прибегают к химическому синтезу.

Витамин В12

Мировая продукция витамина В12 составляет 9-11 тыс. кг в год. Из них около половины используется на медицинские цели, остальное количество - в животноводстве как кормовые добавки.

Природные продуценты витамина В12 обнаружены среди пропионовокислых бактерий р. Propionibacterium, которые синтезируют от 1 до 8 мг/л этого витамина. С помощью селекционно­генетических методов получен мутант P. shermanii M­82, который дает до 60 мг/л продукта.

Продуцент B. rettgerii также используется для микробиологического синтеза В12. В качестве активных продуцентов витамина В12 используют также актиномицеты и родственные микроорганизмы: путем мутаций и ступенчатого отбора получен штамм Nocardia rugosa, накапливающий до 18 мг/л В12.

Активные продуценты В12 обнаружены среди представителей Micromonospora.

Высокой природной продуктивностью обладают представители метанотрофов Methanosarcina, Methanococcus, среди которых выделен штамм Methanococcus halophilus, обладающий самым высоким среди природных штаммов уровнем продукции - 16 мг на 1 г биомассы.

В значительных количествах В12 синтезируют анаэробные бактерии р. Clostridium, что особенно эффективно для технологии.

Известны активные продуценты В12 среди Pseudomonas. У P. denitricans получен мутант, дающий на оптимизированной среде до 59 мг/л. Штамм запатентован фирмой «Merck» для промышленного получения В12.

В России наиболее широкое применение имеют Propionibacterium freudenreichii. Их культивируют на кукурузном экстракте и глюкозе в анаэробных условиях 72 ч для роста культуры. Во 2­й фазе синтеза в ферментер вносят предшественник - специфическое азотистое основание и проводят ферментацию еще 72 ч. Затем экстрагируют В12 из биомассы бактерий и очищают его химическим способом. Такой витамин применяют в медицинских целях.

Для нужд животноводства В12 получают с использованием смешанной культуры, содержащей бактерии Methanosarcina barkeri, Methanobacterium formicum. Содержание В12 в культуре достигает 6,5 мг/г сухой биомассы.

Рибофлавин

Витамин В2 в природе продуцируется растениями, дрожжами, мицелиальными грибами, а также некоторыми бактериями.

Среди прокариот известными продуцентами флавинов являются микобактерии и ацетобутиловые бактерии. Из актиномицетов - Nocardia eritropolis. метаболит аминокислота витамин фермент

Среди мицелиальных грибов - Aspergillus niger и Eremothecium ashbyi.

Рибофлавин микробиологического производства используется исключительно как кормовая добавка в животноводстве. Основным продуцентом кормового рибофлавина является Eremothecium ashbyi, который культивируют на кукурузной или соевой муке с минеральными добавками. Культивирование ведут до появления спор. Его лучшие продуценты, полученные с помощью мутаций и ступенчатого отбора продуцируют до 600 мг/л продукта. Затем культуральную жидкость выпаривают и используют в виде порошковой добавки к кормам в животноводстве.

Эргостерин

Эргостерин - исходный продукт производства жирорастворимого витамина D2. Эргостерин является также основным стерином дрожжей, поэтому данные микроорганизмы - основной источник для селекционных работ. Так, Saccharomyces carlbergensis дает до 4,3 мг/л, S. ellipsoideus - 1,5 мг/л, Rhodotorula glutinis - 1 мг/л, Candida utilis - 0,5 мг/л продукта.

Наиболее широко в производстве используют дрожжи Saccharomyces carlbergensis, а также S. cerevisiae.

В последние годы появились сообщения о промышленном производстве витамина С. Сообщается о конструировании генно­инженерными методами продуцента: гены Corynebacterium перенесли в Erw. herbicola.

В рекомбинантном штамме объединены способность эрвиний превращать глюкозу в глюконовую кислоту со способностью коринебактерий превращать последнюю в гулоновую кислоту, которую химическим способом превращают в аскорбиновую кислоту.

Каротиноиды

Каротиноиды - обширная группа природных пигментов, которые синтезируют хемо­ и фототрофами: прокариотами, мицелиальными грибами и дрожжами, водорослями и высшими растениями.

Каротиноиды, синтезируемые микроорганизмами, существуют в клетке в свободной форме, а также в виде гликозидов, в виде эфиров жирных кислот и как каротинобелковые комплексы. Ценность этих соединений для млекопитающих заключается в том, что это источник витамина А.

До настоящего времени не созданы истинные продуценты каротиноидов, а каротиноиды микроорганизмов выделяют из микроорганизмов преимущественно путем экстракции.

В настоящее время описано около 500 различных каротиноидов. Структурно каротиноиды представляют собой хромофор (или ядро), соединенное с изопреновыми остатками. Отличительной чертой хромофора является наличие сопряженных двойных связей. От числа этих связей зависит интенсивность окраски каротиноидов. Так, алифатические каротиноиды, содержащие не более 5 сопряженных связей - соединения неокрашенные.

Среди них наибольшее значение имеют фитоин и фитофлуин. Синтезируемые Neurospora crassa каротиноиды имеют 9 сопряженных связей и имеют ярко­желтое окрашивание. С увеличением двойных связей окраска усиливается до красной и фиолетовой.

Высшие каротиноиды имеют в молекуле до 45-50 атомов углерода. К таким каротиноидам относятся сарцинаксантин, продуцируемый Sarcina lutea.

Некоторые каротиноиды могут иметь в своем составе терминальную группировку как алеуреаксантин гриба Aleuria aurantia.

Другие каротиноиды имеют терминальную гидроксигруппу как ­гидроксифлеиксантин Blakeslea trispora.

Расположение каротиноидов в клетках микроорганизмов различно. Так, у фототрофных микроорганизмов каратиноиды сосредоточены в фотосинтезирующем аппарате. У хемотрофных - ассоциированы с клеточной мембраной. У некоторых (Micrococcus radiodurans) - локализованы в клеточной стенке. У грибов - в липидных глобулах цитоплазмы.

Каратиноиды выполняют в клетке роль антиоксидантов и защищают ее от явления перекисного окисления. Кроме того, каратиноиды являются фотоловушками, собирающими световую энергию.

Получение каротиноидов в промышленности

Традиционные методы получения каратиноидов сводятся к гомогенизации биомассы и экстракции каратиноидов полярными растворителями (ацетон, метанол). Индивидуальные каратиноиды получают путем разделения методом тонкослойной хроматографии на силикагеле. Следующим по распространенности является химический синтез каратиноидов.

Традиционными продуцентами микробного синтеза каратиноидов являются бактерии, мицелиальные грибы и дрожжи. Из фототрофных бактерий можно отметить Chloroexus и некоторые виды Rhodopseudomonas. Эта группа бактерий интересна тем, что у них в зависимости от интенсивности освещения можно регулировать выход каратиноидов.

Антибиотики

Традиционные представления об антибиотиках, или антибиотических веществах, связаны с их широким применением в современной медицине и ветеринарии. Некоторые антибиотические препараты применяют как стимуляторы роста животных, в борьбе с болезнями растений, при консервировании пищевых продуктов и в научных исследованиях (в области биохимии, молекулярной биологии, генетике, онкологии).

Современное определение термина «антибиотик» принадлежит М.М. Шемякину и А.С. Хохлову (1961), которые предложили считать антибиотическими веществами все продукты обмена любых организмов, способные избирательно убивать или подавлять рост и развитие микроорганизмов (бактерии, грибы, вирусы и др.), а также некоторых злокачественных новообразований.

В соответствии с классификацией, в основе которой лежит химическое строение, все описанные антибиотики можно разделить на следующие группы:

1) ациклические соединения (исключая жирные кислоты и терпены);

2) алициклические соединения (в том числе тетрациклины);

3) ароматические соединения;

4) хиноны;

5) кислородсодержащие гетероциклы;

7) пептиды.

Полностью химическая структура установлена для одной трети известных антибиотиков, и только половина из них может быть получена химическим путем. Поэтому микробиологический способ получения антибиотических средств очень актуален.

Синтез микроорганизмами антибиотиков - одна из форм проявления антагонизма; связан с определенным характером обмена веществ, возникшим и закрепленным в ходе его эволюции, т. е. это наследственная особенность, выражающаяся в образовании одного и более определенных, строго специфичных для каждого вида антибиотических веществ. Воздействуя на постороннюю микробную клетку, антибиотик вызывает значительные нарушения в ее развитии. Некоторые из антибиотиков способны подавлять синтез оболочки бактериальной клетки в период размножения, другие воздействуют на ее цитоплазматическую мембрану, изменяя проницаемость, часть из них является ингибиторами реакций обмена веществ. Несмотря на интенсивное изучение механизма действия различных антибиотиков, далеко не полностью выявлено их влияние на обмен веществ даже в клетках бактерий, которые являются основными объектами исследования.

В настоящее время описано более 3000 антибиотиков, но только 150 из них нашли практическое применение. Ниже будет рассмотрена технология производства тех из них, которые относятся к продуктам метаболизма микроорганизмов и нашли применение в сельском хозяйстве в виде соответствующих добавок к кормам (кормовые антибиотики) и в качестве средств защиты растений.

В течение многих лет антибиотики используют как стимуляторы роста сельскохозяйственных животных и птицы, как средства борьбы с заболеваниями растений и посторонней микрофлорой в ряде бродильных производств, как консерванты пищевых продуктов. Их применение в сельском хозяйстве приводит к снижению заболеваемости и смертности, прежде всего молодняка, и к ускорению роста и развития животных и птицы, способствует сокращению количества потребляемых кормов в среднем на 5 10 %. При применении антибиотиков в свиноводстве от каждой 1000 свиней дополнительно получают 100 120 ц мяса, от 1000 кур несушек - до 15 тыс. яиц в год. Механизм стимулирующего действия антибиотических веществ также нельзя считать полностью выясненным. Видимо, стимулирующий эффект воздействия низких концентраций антибиотиков на организм животного связан, в основном, с двумя факторами: воздействием на микрофлору кишечника или непосредственным влиянием на организм животного. В первом случае антибиотики способствуют увеличению числа полезных микроорганизмов, синтезирующих витамины и преобладающих над патогенными формами. Они снижают число вредных для организма животного микробов, использующих биологически активные вещества и образующих токсины, имеющие патогенные или условно патогенные формы. Антибиотики оказывают влияние на микроорганизмы, присутствующие в кишечнике, способствуя созданию устойчивых штаммов, менее вредных для животного, изменяют метаболизм присутствующих микробов. Они вызывают перемещение микроорганизмов в кишечнике животного; под их влиянием наблюдается снижение субклинических инфекций, часто замедляющих развитие молодняка, снижение рН содержимого кишечника, уменьшение поверхностного натяжения клеток организма, что способствует ускорению их деления.

Во втором случае в организме животного наблюдается синергизм действия гормонов, растет количество ростовых гормонов, ускоряется процесс потребления пищи, растет приспособляемость организма к неблагоприятным условиям. Под влиянием антибиотиков снижается потребность животного в витаминах, увеличивается синтез витаминов тканями, стимулируется синтез сахаров и витамина А из каротина, растет скорость синтеза ферментов, образуется меньше побочных продуктов. Кроме того, растет абсорбционная способность тканей, стимулируется потребление метаболитов.

Кормовые антибиотики применяют в виде неочищенных препаратов, которые представляют собой высушенную биомассу продуцента, содержащую помимо антибиотика аминокислоты, ферменты, витамины группы В и другие биологически активные вещества. Получаемые препараты стандартизуют по активности или количеству входящего в их состав основного вещества, учитывая или не учитывая присутствие в нем витамина B12. Все производимые кормовые антибиотики:

а) не используются в терапевтических целях и не вызывают перекрестной резистенции бактерий к антибиотикам, применяемым в медицине;

б) практически не всасываются в кровь из пищевого тракта;

в) не меняют своей структуры в организме;

г) не обладают антигенной природой, способствующей возникновению аллергии.

При длительном применении одного и того же препарата существует опасность возникновения антибиотикоустойчивых микроорганизмов. Для ее предупреждения периодически меняют используемые антибиотические вещества или применяют смесь антибиотиков, позволяющую поддерживать первоначально достигнутый эффект на необходимом уровне.

В СССР уже в течение нескольких десятков лет выпускаются кормовые препараты на основе хлортетрациклина - биовит, или биомицин кормовой, с различным начальным содержанием антибиотика и витамина B12. В настоящее время производство кормовых антибиотиков основывается и на других препаратах немедицинского назначения, таких, как бацитрацин, гризин, гигромицин Б и др.

В течение последних 20 лет антибиотики используют как средство борьбы с различными фитопатогенами. Источники заражения растений фитопатогенными микроорганизмами различны. Не составляют исключения и семена самого растения, идущие на посев. Воздействие антибиотического вещества сводится к задержанию роста или гибели фитопатогенных микроорганизмов, находящихся в семенах и вегетативных органах растения.

Получаемые препараты должны быть высокоактивными против возбудителя заболевания в окружающей растение среде, безвредными в применяемых для растения дозах, способными сохранять антибиотическую активность в течение необходимого времени и легко проникать в соответствующие ткани растения.

К числу антибиотических веществ, нашедших наиболее широкое применение в борьбе с фитопатогенами, относятся прежде всего фитобактериомицин, трихотецин и полимицин.

Применение антибиотиков в пищевой промышленности позволяет в значительной степени снизить длительность термообработки различных продуктов питания при их консервировании. А это, в свою очередь, обеспечивает большую сохранность присутствующих в них биологически активных веществ, вкусовых качеств, консистенции продуктов. Используемые антибиотики воздействуют в основном на клостридиальные и термофильные бактерии, устойчивые к нагреванию. Наиболее эффективным антибиотиком при консервировании овощей общепризнан в РФ и за рубежом низин. Он не токсичен для человека и позволяет вдвое уменьшить время термообработки овощей. Технология производства любых антибиотиков немедицинского назначения, кроме тех, что используются в пищевой и консервной промышленности, строится по единой схеме, предусматривающей все стадии асептического промышленного культивирования штамма продуцента и биосинтез антибиотика, предварительную обработку культурной жидкости, ее вакуум упаривание, сушку и стандартизацию готового продукта путем смешения с необходимым количеством наполнителя. В качестве последних обычно используют отруби, жмыхи различных культур и другие вещества органической и неорганической природы.

Динамика накопления антибиотика в культуральной жидкости в подавляющем большинстве случаев имеет типичный вид зависимости, характерный для биосинтеза вторичных метаболитов, т. е. максимум образования биомассы во времени предшествует максимуму антибиотикообразования. Поэтому на первых этапах культивирования целью производства является накопление необходимого количества биомассы (антибиотик при этом практически отсутствует). Биосинтез антибиотика происходит на второй стадии производственного культивирования в основных ферментерах, причем время биосинтеза может в 2-3 раза превышать время, затрачиваемое на культивирование штамма продуцента.

Использованная литература

1. Биотехнология: практикум / С. А. Акимова, Г. М. Фирсов. - Волгоград: ФГБОУ ВПО Волгоградский ГАУ, 2013. - 108 с.

2. Шевелуха В.С., Калашникова Е.А., Воронин Е.С. и др. Сельскохозяйственная биотехнология. - Учебник. М.: Высшая школа, 2008. - 469

3. Калашникова Е.А., Кочиева Е.З., Миронова О.Ю. Практикум по сельскохозяйственной биотехнологии, М.:КолосС, 2006, 149 с.

Размещено на Allbest.ru

Подобные документы

    Биосинтез алкалоидов, изопреноидов и фенольных соединений. Эмпирическая (тривиальная), биохимическая и функциональная классификации вторичных метаболитов, основные группы, закономерности строения. Ацетатно-малонатный путь синтеза фенольных соединений.

    курсовая работа , добавлен 21.10.2014

    Производство продуктов микробного синтеза первой и второй фазы, аминокислот, органических кислот, витаминов. Крупномасштабное производство антибиотиков. Производство спиртов и полиолов. Основные типы биопроцессов. Метаболическая инженерия растений.

    курсовая работа , добавлен 22.12.2013

    Биообъект как средство производства лекарственных, диагностических и профилактических препаратов; требования, классификация. Иммобилизация ферментов, используемые носители. Применение иммобилизованных ферментов. Биологическая роль витаминов, их получение.

    контрольная работа , добавлен 04.11.2015

    Антиоксиданты и ингибиторы радикальных и окислительных процессов. Перекисное окисление липидов. Биологическое действие витаминов. Исследование биологической роли активированных кислородных метаболитов. Определение концентрации белка по методу Бредфорда.

    курсовая работа , добавлен 12.11.2013

    Биотехнология как совокупность методов использования живых организмов и биологических продуктов в производственной сфере. Клонирование как бесполое размножение клеток растений и животных. Использование микроорганизмов для получения энергии из биомассы.

    реферат , добавлен 30.11.2009

    Общая характеристика пищевых кислот. Биолого-химическая характеристика растений. Подготовка растительного материала. Определение содержания органических кислот в сахарной свекле, картофеле, репчатом луке и моркови. Рекомендуемые регионы возделывания.

    курсовая работа , добавлен 21.04.2015

    Антибиотики – продукты жизнедеятельности микроорганизмов, их модификации, обладающие высокой физиологической активностью по отношению к бактериям: классификация, химическое строение, группы. Методы выделения антибиотиков из культуральной жидкости.

    контрольная работа , добавлен 12.12.2011

    Роль дрожжей в природных экосистемах, перспективы их использования в различных разработках. Морфология и метаболизм дрожжей, вторичные продукты. Методы приготовления препаратов микроорганизмов. Биотехнологии, промышленное использование дрожжей.

    курсовая работа , добавлен 26.05.2009

    История открытия витаминов. Влияние на организм, признаки и последствия недостатка, основные источники витаминов А, С, D, Е. Характеристика витаминов группы В: тиамина, рибофлавина, никотиновой и пантотеновой кислот, пиридоксина, биотина, холина.

    презентация , добавлен 24.10.2012

    Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.


© 2024
youngforyoung.ru - Медицинский портал - Будьте здоровы